
Daedalus/DaedalusRT User Manual

The Daedalus/DaedalusRT Team
csartem@liacs.nl

September 10, 2012

Contents

1 Overview 5
1.1 Automatic Parallelization . 6
1.2 Design Space Exploration . 6
1.3 Hard-Real-Time Schedulability Analysis . 6
1.4 System Synthesis . 6

2 Installing Daedalus/DaedalusRT 8
2.1 Prerequisites . 8
2.2 Obtaining the Frameworks . 8
2.3 Installing the Daedalus Framework . 9
2.4 Installing the DaedalusRT Framework . 9
2.5 Installing the individual tools . 9

2.5.1 Installing the PNgen Compiler . 9
2.5.2 Installing pntools . 10
2.5.3 Installing Sesame . 10
2.5.4 Installing darts . 10
2.5.5 Installing ESPAM . 10

3 Using Daedalus 11
3.1 Example I: Single Application - FPGA Backend . 11

3.1.1 Using the auto-run script . 11
3.1.2 Running the Daedalus Framework manually . 11
3.1.3 Building the Project using Xilinx Tools . 14
3.1.4 Programming the FPGA and Running the Application 16

3.2 Example II: Sobel filter - SystemC Backend . 19
3.2.1 Using the auto-run script . 20
3.2.2 Running the Timed SystemC Backend Manually . 20

4 Using DaedalusRT 21
4.1 Example I: Multiple Applications - FPGA Backend . 21

4.1.1 Using the auto-run script . 21
4.1.2 Running the DaedalusRT Framework Manually . 21
4.1.3 Building and Running the Generated Project . 22

5 Contributing to Daedalus/DaedalusRT 26
5.1 PNgen . 26

5.1.1 Building PNgen from the git repository . 26
5.2 pntools . 26

5.2.1 Building pntools from the git repository . 27
5.3 darts . 27
5.4 ESPAM . 27

5.4.1 Building ESPAM from the git repository . 27

1

Table 1: Revisions of this user manual
Date Author(s) Notes

2012-09-10 Mohamed A. Bamakhrama and Jiali Teddy Zhai Initial release

2

Introduction

This document serves as a manual for Daedalus and DaedalusRT users and developers. Chapter 1 gives an overview
of the frameworks. Chapter 2 provides instructions on how to install them. Chapter 3 explains how to use the
Daedalus framework, while Chapter 4 explains how to use the DaedalusRT framework. Chapter 5 explains how to
contribute to the development of the tools.

3

Acknowledgments

The work on Daedalus framework has been supported by the following Dutch and European organizations: Nether-
lands Organisation for Scientific Research (NWO), Technology Foundation STW, European Union (EU) Seventh
Framework Programme (FP7), CATRENE MEDEA+, and others.

List of Contributors
Many people have contributed over the years to the Daedalus/DaedalusRT frameworks. Below we provide an
incomplete list of the contributors (in alphabetical order). We would like to apologize in advance from anyone
whom we forgot to add his/her name.

Mohamed Bamakhrama, Ed Deprettere, Cagkan Erbas, Ji Gu, Sven van Haastregt, Kai Huang, Joris
Huizer, Dmitry Nadezhkin, Hristo Nikolov, Andy Pimentel, Simon Polstra, Todor Stefanov, Ying Tao,
Mark Thompson, Sven Verdoolaege, Jiali Teddy Zhai, Wei Zhong

4

Chapter 1

Overview

Daedalus [1, 2] is a system-level design flow for designing multiprocessor systems-on-chip (MPSoC) running
embedded streaming applications.

Pµ

Pµ Pµ

System−level
specification

specification

V
a
lid

a
ti
o
n
 /
 C

a
lib

ra
ti
o
n

Gate−level
specification

RTL

specification

MemMem

HW IP

MPSoC

connect
Inter−

Functional

in XML
Mapping spec.

in XML

L
ib

ra
ry

 I
P

 c
o
m

p
o
n
e
n
ts

RTL
Models

netlist
Platform

in VHDL
IP cores C Auxiliary

files

Sesame

Manually creating a PPN

System−level design space exploration:

RTL synthesis: commercial tool, e.g. Xilinx Platform Studio

program in C
Sequential

Parallelization:

Platform spec.
Polyhedral Process Network

Application spec. in XML

High−level

Models

processors
code for

PNgen

Automated system−level synthesis: ESPAM

Figure 1.1: Overview of the Daedalus framework

There is also a variant of Daedalus, called DaedalusRT [3], which is targeted for designing hard-real-time
embedded streaming systems. DaedalusRT derives Cyclo-Static Data Flow (CSDF) [4] graphs equivalent to PPNs
used in the Daedalus framework, and then uses hard-real-time multiprocessor scheduling theory in the Design
Space Exploration (DSE) phase to determine the platform size and the mapping of tasks to processors.

Figure 1.2: Overview of the DaedalusRT framework

5

In the following sections, we will describe in details each phase and the associated tools implementing it.

1.1 Automatic Parallelization
The first phase in the flow is the automatic parallelization shown in Figure 1.1. The PNgen compiler [5] is used to
derive a parallel specification of the applications in the form of Polyhedral Process Networks (PPN, [5]) from a C
program. The input to the PNgen compiler is a set of C files. The top-level C file has to conform to a constrained
form known as static affine nested loop programs (SANLP, [5]). This constrained form allows to determine the
data dependencies, and in turn, derive a parallel specification of the program in the form of Polyhedral Process
Networks (PPN, [5]). An example of a SANLP program is shown in Figure 1.3. The program shown in Figure 1.3
implements the edge detection Sobel filter. This constrained form does not apply to the set of C files implementing
all functions in the top-level C file. For example for the Sobel filter, the implementation of functions readPixel,
gradient, absVal and writePixel may contain arbitrary C code and they are stored in a header file called
sobel func.h.

1.2 Design Space Exploration
The second phase is the design space exploration which accepts as an input a set of PPNs (and their equivalent
CSDF graphs in case of DaedalusRT). Daedalus uses the Sesame framework [6] to perform the DSE. The timing
guarantees provided by the resulting platform are best-effort.

1.3 Hard-Real-Time Schedulability Analysis
Once designing a hard-real-time embedded streaming systems using DaedalusRT is desired, the second phase is
replaced by hard-real-time schedulability analysis [3]. This phase contains analysis model derivation and analysis
as shown in Figure 1.2. pntools is used to derive analysis model in the form of CSDF. darts toolbox performs
analysis based on hard-real-time multiprocessor scheduling theory to derive the minimum number of processors
needed to schedule the applications while guaranteeing a certain throughput, together with the mapping of tasks to
processors.

1.4 System Synthesis
The last step is the system synthesis which is implemented using the ESPAM tool [7]. The inputs to this step are:
1) a set of PPNs, 2) the platform specification, and 3) the mapping specification. After that After that, ESPAM
generates an MPSoC platform that can run the parallelized applications. The generated platform consists of the
hardware specifications together with the parallel C code.

6

#include "sobel_func.h"

#define N 450 // image width

#define M 275 // image height

int main(void)

{

int i, j;

static int image[M][N];

static int Jx[M][N];

static int Jy[M][N];

static int av[M][N];

for (j=1; j <= M; j++) {

for (i=1; i <= N; i++) {

readPixel(&image[j][i]);

}

}

for (j=2; j <= M-1; j++) {

for (i=2; i <= N-1; i++) {

gradient(&image[j-1][i-1], &image[j][i-1], &image[j+1][i-1],

&image[j-1][i+1], &image[j][i+1], &image[j+1][i+1], &Jx[j][i]);

}

}

for (j=2; j <= M-1; j++) {

for (i=2; i <= N-1; i++) {

gradient(&image[j-1][i-1], &image[j-1][i], &image[j-1][i+1],

&image[j+1][i-1], &image[j+1][i], &image[j+1][i+1], &Jy[j][i]);

}

}

for (j=2; j <= M-1; j++) {

for (i=2; i <= N-1; i++) {

absVal(&Jx[j][i], &Jy[j][i], &av[j][i]);

}

}

for (j=2; j <= M-1; j++) {

for (i=2; i <= N-1; i++) {

writePixel(&av[j][i]);

}

}

return (0);

}

Figure 1.3: Example of a SANLP implementing the Sobel filter

7

Chapter 2

Installing Daedalus/DaedalusRT

In this chapter, we explain the steps to install Daedalus, DaedalusRT, and their tools.

2.1 Prerequisites
Daedalus/DaedalusRT are available only on Linux platforms and tested using the Linux distributions listed in
Table 2.1. Installing Daedalus/DaedalusRT requires the tools shown in Table 2.2 to be installed on the system.

Table 2.1: Tested Linux distributions
Distribution Version
Kubuntu 10.4 (32-bit)
Ubuntu 12.04 (64-bit)
openSUSE 11.4 (64-bit)
Fedora 10 (32-bit)

Table 2.2: Tools required to install Daedalus/DaedalusRT

Tool Tested version
GNU Compiler Collection (GCC) 4.5.2
GNU Autoconf 2.67
GNU make 3.81
GNU libtool 2.2.6b
GNU M4 macro processor 1.4.14
flex 2.5.35
GNU bison 2.4.1
Oracle Java JDK 1.6.0 22
Python 2.7.1+
GNU Wget 1.12

The listed versions are the ones that have been tested while developing this manual. A higher/older version
might cause compilation/installation errors in some cases (especially with GCC). The Daedalus framework instal-
lation consumes around 900 MB of disk space, while the DaedalusRT framework installation consumes around 1.2
GB of disk space.

2.2 Obtaining the Frameworks
The Daedalus and DaedalusRT frameworks together with the individual tools of the frameworks can be downloaded
for free from http://daedalus.liacs.nl/. All the releases have names of the form release_yyyymmdd,
where yyyymmdd is the date of the release. Therefore, the user can easily determine the latest release. Please note
that we provide support only for problems related to the latest releases of the tools.

8

http://daedalus.liacs.nl/

2.3 Installing the Daedalus Framework
We provide a script that installs the whole Daedalus framework automatically on a Linux machine. To run this
script, open a command-line terminal and execute the commands shown in Figure 2.1.

mkdir daedalus

cd daedalus

wget http://daedalus.liacs.nl/daedalus/release_yyyymmdd/setup_daedalus.sh

chmod +x setup_daedalus.sh

./setup_daedalus.sh [-s systemc-path] [-j jdk-path] [-h] [-c] [-d]

Figure 2.1: Commands needed to install the Daedalus framework. yyyymmdd stands for the release date

The setup script accepts several options. The full list of options and usage can be shown by passing -h option
which shows a help message.

2.4 Installing the DaedalusRT Framework
We provide a script that installs the whole DaedalusRT framework automatically on a Linux machine. To run this
script, open a command-line terminal and execute the commands shown in Figure 2.2.

mkdir daedalus-rt

cd daedalus-rt

wget http://daedalus.liacs.nl/daedalus-rt/release_yyyymmdd/setup_daedalus-rt.sh

chmod +x setup_daedalus-rt.sh

./setup_daedalus-rt.sh [-s systemc-path] [-j jdk-path] [-h] [-c] [-d]

Figure 2.2: Commands needed to install the DaedalusRT framework.

The setup script accepts several options. The full list of options and usage can be shown by passing -h option
which shows a help message.

2.5 Installing the individual tools
We explain here the steps to install the individual tools of the Daedalus/DaedalusRT frameworks.

2.5.1 Installing the PNgen Compiler
To install the PNgen compiler, open a command-line terminal and execute the commands shown in Figure 2.3.

mkdir pngen

cd pngen

wget http://daedalus.liacs.nl/pngen/release_yyyymmdd/setup_pngen.sh

chmod +x setup_pngen.sh

./setup_pngen.sh [clean] [nocheck]

Figure 2.3: Commands needed to install PNgen.

After invoking the commands, PNgen will be installed in pngen directory. The setup script (setup_pngen.sh)
takes two optional arguments: clean which cleans the pngen directory from all the generated/installed files, and
nocheck which ignores invoking make check for all the packages (leads to reduced installation time). When
setup_pngen.sh is executed with no options, it builds PNgen from scratch and invokes make check for all the
packages.

9

mkdir pntools

cd pntools

wget http://daedalus.liacs.nl/pntools/release_yyyymmdd/setup_pntools.sh

chmod +x setup_pntools.sh

./setup_pntools.sh [pngen_path] [clean]

Figure 2.4: Commands needed to install pntools

2.5.2 Installing pntools

pntools is a set of tools for working with PPNs. To install pntools, open a command-line terminal and execute
the commands shown in Figure 2.4.

setup_pntools.sh takes two options. The first option is pngen_path which is the full path to an existing
PNgen installation. If pngen_path is not specified, then the script will install PNgen from scratch. The second
option is clean which cleans the pntools directory from all the generated/installed files.

2.5.3 Installing Sesame
TBD

2.5.4 Installing darts

darts (stands for Dataflow Analysis for Hard-Real-Time Scheduling) is a tool-set for performing hard-real-time
multiprocessor scheduling analysis on CSDF graphs. To install it, open a command-line terminal and execute the
commands shown in Figure 2.5.

mkdir darts

cd darts

wget http://daedalus.liacs.nl/darts/release_yyyymmdd/setup_darts.sh

chmod +x setup_darts.sh

./setup_darts.sh [clean]

Figure 2.5: Commands needed to install darts.

2.5.5 Installing ESPAM
ESPAM is the system synthesis tools of Daedalus and DaedalusRT. To install it, open a command-line terminal and
execute the commands shown in Figure 2.6 -j option can be used to pass the path to Java JDK installation, while

mkdir espam

cd espam

wget http://daedalus.liacs.nl/espam/release_yyyymmdd/setup_espam.sh

chmod +x setup_espam.sh

./setup_espam.sh [-j jdk-path] [-s systemc-path] [-c] [-h]

Figure 2.6: Commands needed to install ESPAM

the -s option can be used to pass the path to SystemC installation.

10

Chapter 3

Using Daedalus

In this chapter, we provide several examples on how to use the Daedalus framework. Throughput this chapter, we
assume that the variables shown in Table 3.1 store the full paths pointing to the corresponding tools in the Daedalus
framework.

Table 3.1: Variables storing the full paths to Daedalus tools
Variable Meaning
$DAEDALUS_DIR The full-path to the directory where Daedalus is installed
$PN_DIR The full-path to the directory where PNgen is installed
$SESAME_DIR The full-path to the directory where Sesame is installed
$ESPAM_DIR The full-path to the directory where ESPAM is installed

The examples in this chapter refer to Daedalus release release_20120907. The source code of the examples
can be found under $DAEDALUS_DIR/examples.

3.1 Example I: Single Application - FPGA Backend
In this example, we show a step-by-step example of implementing the Sobel filter shown in Figure 1.3 on an
FPGA-based MPSoC. The MPSoC platform consists of three Xilinx MicroBlaze processors running on Xilinx
ML605 FPGA board.

3.1.1 Using the auto-run script
In the directory where Daedalus is installed, a script called daedalus.sh can be found at the following loca-
tion: $DAEDALUS_DIR/scripts/daedalus.sh. This script can be used to invoke all the different components
of Daedalus automatically. To run the Daedalus flow on the Sobel example, which can be found also under
$DAEDALUS_DIR/examples/sobel, execute the following command:

$DAEDALUS_DIR/scripts/daedalus.sh -p $DAEDALUS_DIR/examples/sobel -o fpga

The command in Figure 3.1.1 will generate a directory called parallel under the $DAEDALUS_DIR/examples/sobel
directory. The parallel directory contains the FPGA project in a directory called sobel. Now, proceed to Section
3.1.3 for instructions on how to build the generated project using Xilinx tools.

3.1.2 Running the Daedalus Framework manually
For the reader interested in understanding the inner workings of the Daedalus flow, we provide here a detailed
description of the commands executed by the auto-run script. The user can always refer to the auto-run script to
see the exact steps executed by the flow.

11

Running PNgen

First, copy the contents of directory $DAEDALUS_DIR/examples/sobel/sequential into a new directory called
$DAEDALUS_DIR/examples/sobel/parallel. Inside the parallel directory, make a new directory called
func_code and copy the following files into it: sobel_func.h and sobel_func.cpp. Then, to produce the PPN
specifications, open a command-line terminal and execute the commands shown in Figure 3.1.

cd parallel

$PN_DIR/bin/c2pdg -func main sobel.c

$PN_DIR/bin/pn < sobel.yaml > sobel-pn.yaml

$PN_DIR/bin/pn2adg --xml < sobel-pn.yaml > sobel.kpn

Figure 3.1: Commands to generate the PPN of the Sobel example

The resulting sobel.kpn file is an XML file containing the PPN representation of the application. This file
represents the input to ESPAM. The resulting PPN can be visualized using the dotty tool as shown in Figure 3.2.

$PN_DIR/bin/pn2dot < sobel-pn.yaml > sobel-pn.dot

dotty sobel-pn.dot

Figure 3.2: Visualizing the resulting PPN

Specifying Platform and Mapping files

Daedalus provides the ability to either specify the platform/mapping specifications manually, or derive them using
Sesame. We start by showing the first option. We can manually specify the platform specification (sobel.pla) to
be used and the assignment (sobel.map) of PPN processes to processing resources, i.e., Xilinx MicroBlaze (MB)
in this case. In the next subsection, we show how to generate sobel.pla and sobel.map files automatically
using Sesame. Figure 3.3 shows an example of a platform file containing three MBs interconnected via AMBA
AXI crossbar. Here we explain the important attributes to be specified in the platform file and their meaning.

• MB: type of processor, Xilinx MicroBlaze (MB);

• data_memory="65536": size of local data memory in bytes, 65536 in this case;

• program_memory="65536": size of local program memory in bytes, 65536 in this case;

• <network name="CS" type="AXICrossbarSwitch">: type of interconnection; AXICrossbarSwitch
denotes AMBA AXI crossbar. Otherwise, if no network is specified, Xilinx Fast Simplex Link (FSL)
FIFOs are assumed to interconnect MBs. FSL FIFOs are automatically instantiated between MBs according
to the given mapping file explained later on;

• <host_interface name="HOST_IF" type="ML605" interface="UART">: host interface is essentially
another MB with minimum resource usage in terms of data and program memory (8 KB each). The purpose
of having host interface is to communicate with host PC, e.g., after host PC transfers some input data to the
DDR and then notifies host interact to start MBs specified in the platform file. It also specifies the FPGA
board in use via attribute type="ML605". Besides ML605, XUPV5-LX110T board is also supported and
can be used via attribute type="XUPV5-LX110T". Attribute interface="UART" indicates that the FPGA
board communicates with host PC through UART.

Once we have the platform file, we explain how to specify a mapping file. Figure 3.4 shows an example of a
mapping file. The two instances of gradient (PPN processes ND_1 and ND_2) are mapped to MB mb_2 and mb_3.
All the other PPN processes are mapped to MB mb_1. On MB mb_1, all PPN processes are statically scheduled
according to the schedule computed in PNgen.

• schedule_type: Besides statically schedule all PPN processes mapped onto the same MB, dynamic schedul-
ing of the PPN processes is also supported. Dynamic scheduling includes round-robin and round-robin with
yielding using Xilinx Xilkernel.

Deriving Platform and Mapping files using Sesame

TBD.

12

<?xml version="1.0" standalone="no"?>

<!DOCTYPE platform PUBLIC "-//LIACS//DTD ESPAM 1//EN"

"http://www.liacs.nl/~cserc/dtd/espam_1.dtd">

<platform name="myPlatform">

<processor name="mb_1" type="MB" data_memory="65536" program_memory="65536">

<port name="IO_1" />

</processor>

<processor name="mb_2" type="MB" data_memory="65536" program_memory="65536">

<port name="IO_1" />

</processor>

<processor name="mb_3" type="MB" data_memory="65536" program_memory="65536">

<port name="IO_1" />

</processor>

<network name="CS" type="AXICrossbarSwitch">

<port name="IO_1" />

<port name="IO_2" />

<port name="IO_3" />

</network>

<host_interface name="HOST_IF" type="ML605" interface="UART">

</host_interface>

<link name="BUS1">

<resource name="mb_1" port="IO_1" />

<resource name="CS" port="IO_1" />

</link>

<link name="BUS2">

<resource name="mb_2" port="IO_1" />

<resource name="CS" port="IO_2" />

</link>

<link name="BUS3">

<resource name="mb_3" port="IO_1" />

<resource name="CS" port="IO_3" />

</link>

</platform>

Figure 3.3: An example of a platform file.

<?xml version="1.0" standalone="no"?>

<!DOCTYPE mapping PUBLIC "-//LIACS//DTD ESPAM 1//EN"

"http://www.liacs.nl/~cserc/dtd/espam_1.dtd">

<mapping name="myMapping">

<processor name="mb_1">

<process name="ND_0" />

<process name="ND_3" />

<process name="ND_4" />

</processor>

<processor name="mb_2">

<process name="ND_1" />

</processor>

<processor name="mb_3">

<process name="ND_2" />

</processor>

</mapping>

Figure 3.4: An example of a mapping file.

Running ESPAM

To run ESPAM and generate the MPSoC implementation, open a terminal and execute the command shown in
Figure 3.5.

After invoking ESPAM, a directory called sobel will be generated which contains a Xilinx Platform Stu-

13

$ESPAM_DIR/bin/espam --adg sobel.kpn --platform ../sobel.pla --mapping ../sobel.map \

--xps --libxps $ESPAM_DIR/src/espam/libXPS/ --sdk --libsdk $ESPAM_DIR/src/espam/libSDK \

--funcCodePath func_code

Figure 3.5: Running the system synthesis tool. \ is used to break the command over multiple lines

dio (XPS) project containing the MPSoC implementation. Currently, ESPAM supports generating XPS projects
compatible with XPS 13.2 and later.

3.1.3 Building the Project using Xilinx Tools
After you generate the Xilinx Platform Studio (XPS) project using ESPAM through either the auto-run script or
manual steps, you will find the generated project under $DAEDALUS_DIR/examples/sobel/parallel/sobel.
Open the project using Xilinx Platform Studio 13.2 or later and perform the FPGA synthesis. After the synthesis is
completed and you have a bitstream, export the project to Xilinx SDK. Upon exporting the project to SDK, SDK
will launch. You need to perform the following steps to import and build the software projects.

1. Upon launching SDK, you will prompted for the workspace location as shown in Figure 3.6. Click on
“Browse” and set the location to be $DAEDALUS_DIR/examples/sobel/parallel/sobel/SDK/. Then,
click on “OK”

Figure 3.6: Step 1: Setting the workspace location

2. Now, you should see a window like the one shown in Figure 3.7.

3. In SDK, click on “File” > “Import” as shown in Figure 3.8

4. A new window will appear as shown in Figure 3.9. Select “General” ¿ “Existing Projects into Workspace”.
Then, click on “Next”

5. You will see a window like the one shown in Figure 3.10. Click on “Browse” to select the root directory
which contains the SDK projects. This directory is $DAEDALUS_DIR/examples/sobel/parallel/sobel/SDK/.

6. After setting the directory correctly, you should see a window like the one shown in Figure 3.11. Now, click
on “Finish”

7. After clicking on “Finish” in the previous step, SDK will build all the imported projects. However, there
are a few issues that we need to fix manually. First, the host interface project (host_if) will show an error.
This is because the project contains the files needed to interface with both of AXI and PLB system. To get
rid of this error, you need to delete the main_PLB.cpp file as shown in Figure 3.12.

8. Next, we need to set up the linker scripts and debugging/optimizations options for the P_* projects. Note:
Correct ELF files will NOT be generated without performing this step. To change the optimization/debugging
options, right-click on each P_* project and select “C/C++ Build Settings” as shown in Figure 3.13

14

Figure 3.7: Step 2: The imported hardware platform in SDK

Figure 3.8: Step 3

9. Now, a new window will appear as shown in Figure 3.14. Click on “Optimization” and change it to Os.
Then, click on Debugging and change it to None.

10. Now, after changing the optimization/debugging options for all the projects, you need to set up the correct
linker script for each P_* project. This can be done by right-click on each P_* project and selecting “Gen-
erate Linker Script”. After that, you will see a new window as the one shown in Figure 3.15. Change the
location of the Stack and Heap from LMB_CTRL_CM_mb_* into PCTRL_BRAM1_mb_*_DCTRL_BRAM1_mb_*.
Moreover, increase the Stack and Heap size into a reasonable value (e.g., 8 KB). Then, click on “Generate”

11. Now, we are done and the correct ELF files are generated

15

Figure 3.9: Step 4

Figure 3.10: Step 5

3.1.4 Programming the FPGA and Running the Application
Now, go back to XPS and perform the following steps:

16

Figure 3.11: Step 6

Figure 3.12: Step 7: Removing the un-used PLB file

1. Associate the host interface processor (host_if_mb) with the correct ELF file which can be found under
$DAEDALUS_DIR/examples/sobel/parallel/sobel/SDK/host_if/Debug/host_if.elf. This is il-
lustrated in Figure 3.16

17

Figure 3.13: Step 8: Changing the build settings

Figure 3.14: Step 9: Changing optimization and debugging options

2. Run “BRAM INIT” which will update the bitstream with the ELF files.

3. Under etc directory in the XPS project directory, rename the file download_ML605.cmd to download.cmd.

4. Open a terminal in the directory $DAEDALUS_DIR/examples/sobel/serial_ml605 and run make. This
will build the program that will communicate with the FPGA from the computer side using UART.

5. Connect and start the FPGA board. Then, run the “Download bitstream to FPGA” command in XPS.

6. After the FPGA programming is done, run the command serial_ml605 which you built previously.

18

Figure 3.15: Step 10: Generating the correct linker script

Figure 3.16: Associating the host interface processor with its ELF file

7. You should now see the processed image being sent from the FPGA

3.2 Example II: Sobel filter - SystemC Backend
In this example, we show a step-by-step example of simulating the Sobel filter shown in Figure 1.3 using the timed
SystemC backend of Daedalus. We assume that you configured the SystemC installation path correctly during the

19

installation phase (see Chapter 2).
WARNING: If you have used the auto-run script to run the FPGA backend in Section 3.1, then please be

careful that using the auto-run script to run the SystemC backend will delete the parallel directory generated by
the FPGA backend. Therefore, you have to either copy it or rename it.

3.2.1 Using the auto-run script
To invoke the Daedalus flow on the Sobel example using the timed SystemC backend, execute the following
command:

$DAEDALUS_DIR/scripts/daedalus.sh -p $DAEDALUS_DIR/examples/sobel -o systemc-timed

The command in Figure 3.2.1 will generate a directory called parallel under the $DAEDALUS_DIR/examples/sobel
directory. Under the parallel directory, you will find another directory called sobel_systemc which contains
the SystemC files. The script will also run automatically the simulation and present the resulting images and
waveforms.

3.2.2 Running the Timed SystemC Backend Manually
To use the timed SystemC backend, you need to perform the same steps for parallelization as you have done for the
FPGA backend in Section 3.1. The only difference is in invoking ESPAM. To invoke ESPAM with the SystemC
backend, execute the command shown in Figure 3.2.2.

$ESPAM_DIR/bin/espam --adg sobel.kpn --platform sobel.pla --mapping sobel.map \

--systemc-timed --libsystemc $ESPAM_DIR/src/espam/libSystemC

A directory named $DAEDALUS_DIR/examples/sobel/parallel/sobel_systemc will be generated. Copy
all the header and images files together with sources to this directory. Then, invoke make and make run under
sobel_systemc.

20

Chapter 4

Using DaedalusRT

In this chapter, we provide an example on how to use the DaedalusRT framework. Throughput this chapter, we as-
sume that the variables shown in Table 4.1 store the full paths pointing to the corresponding tools in the DaedalusRT

framework.

Table 4.1: Variables storing the full paths to DaedalusRT tools
Variable Meaning
$DAEDALUS_RT_DIR The full-path to the directory where DaedalusRT is installed
$PN_DIR The full-path to the directory where PNgen is installed
$PNTOOLS_DIR The full-path to the directory where pntools is installed
$DARTS_DIR The full-path to the directory where darts is installed
$ESPAM_DIR The full-path to the directory where ESPAM is installed

The examples in this chapter refer to DaedalusRT release release_20120907. The source code of the exam-
ples can be found under $DAEDALUS_RT_DIR/examples/synthetic.

4.1 Example I: Multiple Applications - FPGA Backend
In this example, we show a step-by-step example of implementing two synthetic applications (called pipeline

and split_join) on an FPGA-based MPSoC. The MPSoC platform uses Xilinx MicroBlaze processors running
on Xilinx ML605 FPGA board.

4.1.1 Using the auto-run script
In the directory where DaedalusRT is installed, a script called daedalus-rt.sh can be found at the following
location: $DAEDALUS_RT_DIR/scripts/daedalus-rt.sh. This script can be used to run all the different parts
of the flow automatically. To run the DaedalusRT flow on the synthetic directory, which can be found also under
$DAEDALUS_RT_DIR/examples, execute the following command:

$DAEDALUS_RT_DIR/scripts/daedalus-rt.sh -p $DAEDALUS_RT_DIR/examples/synthetic

The user will be asked to enter two parameters per application: 1) the period scaling factor, which is an integer
multiplied by the minimum period of each actor in the application, and 2) the maximum token size (in 32-bit words)
in the application. For both applications, use period scaling factor = 50, and maximum token size = 1. The com-
mand in Figure 4.1.1 will generate a directory called output under the $DAEDALUS_DIR/examples/synthetic
directory. The output directory contains the FPGA project in a directory called xps_project. Now, proceed to
Section 4.1.3 for instructions on how to build and run the generated project.

4.1.2 Running the DaedalusRT Framework Manually
DaedalusRT shares the same steps for parallelization and system synthesis with Daedalus. Therefore, we show
here only the steps specific for DaedalusRT. The user can always refer to the auto-run script to see the exact steps
executed by the flow.

21

Running pntools

DaedalusRT replaces the DSE performed by Sesame with CSDF model derivation and hard-real-time multiproces-
sor schedulability analysis on the resulting CSDF graphs. The first step is to derive the CSDF model required by
the analysis. To do that, parallelize the applications using the instructions given in Section 3.1.2, Then, open a
terminal and execute the commands shown in Figure 4.1.

$PN_DIR/bin/pn2adg < pipeline-pn.yaml > pipeline-adg.yaml

$PNTOOLS_DIR/adg2csdf < pipeline-adg.yaml > pipeline.gph

$PNTOOLS_DIR/adg2csdf -3 < pipeline-adg.yaml > pipeline.xml

Figure 4.1: Deriving CSDF from PPN. Steps shown only for pipeline

The resulting pipeline.gph and pipeline.xml files contain the CSDF graph representation. The .gph file
contains the graph in a format derived from the StreamIt format, while the .xml file contains the graph in the XML
format support by SDF3 [8]. You have to repeat the steps shown in Figure 4.1 for the split_join application.

Running darts

darts allows deriving the platform and mapping specifications for a given set of CSDF graphs. To generate the
platform and mapping specifications, open a terminal and execute the commands shown in Figure 4.2.

$DARTS_DIR/PlatformGenerator.py -o . -m RM-FF -a 50 1 pipeline.gph -a 50 1 split_join.gph

Figure 4.2: Deriving the platform and mapping specifications

PlatformGenerator.py takes the following input arguments:

• -o . which sets the directory where the platform and mapping specifications will be generated to the current
directory

• The scheduling and allocation method. In Figure 4.2, it is set to fixed-priority preemptive scheduling with
rate-monotonic priority assignment and first-fit allocation

• A set of CSDF graphs. In Figure 4.2, two graphs are passed: pipeline and split_join. Each graph is
preceded by a period scaling factor (e.g., 50) and the maximum token size (in 32-bit words) in the applica-
tion. The period scaling factor is an integer that gets multiplied by the minimum period of each actor in the
application. For both applications, we use period scaling factor = 50, and maximum token size = 1.

After invoking PlatformGenerator.py, two files will be generated in $OUTPUT_DIR: 1) platform.pla
which contains the platform specification, and 2) mapping.map which contains the mapping specification. These
two files serve as the input to ESPAM. Now, you can invoke ESPAM using the command shown in Figure 4.3.

$ESPAM_DIR/bin/espam --adg pipeline.kpn --adg split_join.kpn --platform platform.pla \

--mapping mapping.map --xps --libxps $ESPAM_DIR/src/espam/libXPS/ --sdk \

--libsdk $ESPAM_DIR/src/espam/libSDK --funcCodePath $DAEDALUS_RT_DIR/examples/func_code

Figure 4.3: Running ESPAM to synthesize the platform with multiple applications. \ is used to break the command
over multiple lines

Now, proceed to Section 4.1.3 for instructions on how to build and run the generated project.

4.1.3 Building and Running the Generated Project
To build and run the generated project, perform the following steps:

1. Follow the steps from Section 3.1.3 for building the hardware part of the generated project using Xilinx
tools. For the software part, perform step 1 by setting the workspace to:
$DAEDALUS_RT_DIR/examples/synthetic/output/xps_project/SDK. After performing step 1 from
Section 3.1.3, return here and perform the following:

22

(a) Download FreeRTOS Board Support Package (BSP) for MicroBlaze. This can be downloaded from
the following URL:

http://daedalus.liacs.nl/daedalus-rt/release_20120907/FreeRTOS-7.1.0.zip

Unzip this file and you will get a folder named FreeRTOS_Xilinx_SDK_BSP, which contains two sub-
directories called bsp and sw_apps. Move the FreeRTOS_Xilinx_SDK_BSP directory to a directory
where it will not be deleted or modified. The location of FreeRTOS_Xilinx_SDK_BSP will be denoted
$FREERTOS_DIR

(b) Go back to SDK, and click on “Xilinx Tools” > “Repositories” as shown in Figure 4.4

Figure 4.4: Importing FreeRTOS BSP into Xilinx SDK

(c) Now, you will see a window like the one shown in Figure 4.5. Add a new Global Repository by clicking
on “New” next to “Global Repositories”. Now, browse to $FREERTOS_DIR/FreeRTOS_Xilinx_SDK_BSP/
and click “OK”. Then, click on “Apply” and “OK” in the window shown in Figure 4.5

Figure 4.5: Specifying the BSP location

23

http://daedalus.liacs.nl/daedalus-rt/release_20120907/FreeRTOS-7.1.0.zip

2. Now, continue with steps 2–6 from Section 3.1.3. After Step 6, return here.

3. After importing the projects successfully, we need to modify the maximum number of priorities supported
by FreeRTOS. The default value is 4, however, in this example, we map 8 tasks onto a single processor.
Right-click on BSP_P_1 and then click on “Board Support Package Settings” as shown in Figure 4.6.

Figure 4.6: Opening the Board Support Package Settings window

4. Now, click on freertos > kernel_behavior > max_priorities, then change it to 10 as shown in
Figure 4.7.

Figure 4.7: Modifying the maximum number of priorities in FreeRTOS

5. Now, proceed with steps 7–11 from Section 3.1.3.

6. After building the software, perform steps 2, 3 and 5 from Section 3.1.4 to program the FPGA.

7. Now, open a UART terminal and you should observe periodic messages from the applications together with
the output computed by them. This is illustrated in Figure 4.8. The period of the message from pipeline

is around 500 ms, while the messages from split_join have a period equal to around 1000 ms.

24

Figure 4.8: The output from pipeline and split join running on FPGA

25

Chapter 5

Contributing to Daedalus/DaedalusRT

All the individual parts of Daedalus and DaedalusRT are available as open-source software. However, the develop-
ment of these tools and the access to their code repositories is limited. We provide here a quick overview on how
you can contribute to each tool.

5.1 PNgen

The PNgen compiler is maintained by Sven Verdoolaege at the following git repository:
http://repo.or.cz/w/isa.git

Therefore, anyone with Internet access can follow the latest developments in PNgen. For bug reports, please contact
the maintainer.

5.1.1 Building PNgen from the git repository
To build PNgen from the git repository, you need to clone the repository and follow the instructions in the INSTALL
file accompanying the cloned repository. Installing PNgen requires installing several packages and libraries. The
instructions in the INSTALL file show you how to build each library from its sources. However, on modern Linux
distributions, these libraries can be installed using the pre-built packages provided by the distribution vendor. For
example, on 64-bit Ubuntu machines, you can install PNgen by performing the commands shown in Figure 5.1

mkdir pngen

cd pngen

sudo apt-get install pkg-config libtool bison flex libgmp3-dev libyaml-dev libntl-dev libxml2-dev

wget -q http://nl.archive.ubuntu.com/ubuntu/pool/universe/s/syck/libsyck0-dev_0.55+svn270-1_amd64.deb

sudo dpkg -i libsyck0-dev_0.55+svn270-1_amd64.deb

wget -q http://daedalus.liacs.nl/pngen/release_20120706/clang+llvm-2.9-x86_64-linux.tar.bz2

tar -xvjf clang+llvm-2.9-x86_64-linux.tar.bz2

CWD=‘pwd‘

git clone git://repo.or.cz/isa.git

cd isa

./get_submodule.sh

./autogen.sh

./configure --prefix=$CWD/pngen/ --with-clang-prefix=$CWD/pngen/clang+llvm-2.9-x86_64-linux.tar

make

make check

make install

Figure 5.1: Steps to install PNgen on 64-bit Ubuntu without building the libraries required by PNgen

5.2 pntools

pntools is maintained by Sven van Haastregt and Jiali Teddy Zhai at the following git repository:
csartem@ssh.liacs.nl:pntools.git

The access to this repository is restricted to selected users only. For bug reports or any other inquiries, please
contact one of the maintainers.

26

http://repo.or.cz/w/isa.git
csartem@ssh.liacs.nl:pntools.git

5.2.1 Building pntools from the git repository
To build pntools from the git repository, you need to clone the repository and follow the instructions in the
README.md file accompanying the cloned repository.

5.3 darts

darts is maintained by Mohamed Bamakhrama at the following git repository:
csartem@ssh.liacs.nl:darts.git

The access to this repository is restricted to selected users only. For bug reports or any other inquiries, please
contact the maintainer.

darts is developed in Python, and therefore, does not require any steps for building it. The user can directly
use the tools.

5.4 ESPAM
ESPAM is maintained by Todor Stefanov at the following git repository:

csartem@ssh.liacs.nl:espam.git

The access to this repository is restricted to selected users only. For bug reports or any other inquiries, please
contact the maintainer.

5.4.1 Building ESPAM from the git repository
To build ESPAM from the git repository, you need to clone the repository and follow the instructions in the
README.md file accompanying the cloned repository.

27

csartem@ssh.liacs.nl:darts.git
csartem@ssh.liacs.nl:espam.git

Bibliography

[1] M. Thompson, H. Nikolov, T. Stefanov, A. D. Pimentel, C. Erbas, S. Polstra, and E. F. Deprettere, “A frame-
work for rapid system-level exploration, synthesis, and programming of multimedia MP-SoCs,” in Proceed-
ings of the 5th IEEE/ACM international conference on Hardware/software codesign and system synthesis,
CODES+ISSS ’07, (New York, NY, USA), pp. 9–14, ACM, 2007.

[2] H. Nikolov, M. Thompson, T. Stefanov, A. Pimentel, S. Polstra, R. Bose, C. Zissulescu, and E. Deprettere,
“Daedalus: toward composable multimedia MP-SoC design,” in Proceedings of the 45th annual Design Au-
tomation Conference, DAC ’08, (New York, NY, USA), pp. 574–579, ACM, 2008.

[3] M. Bamakhrama, J. Zhai, H. Nikolov, and T. Stefanov, “A methodology for automated design of hard-real-time
embedded streaming systems,” in Proceedings of the 15th Design, Automation, and Test in Europe Conference
and Exhibition, DATE 2012, pp. 941–946, March 2012.

[4] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete, “Cyclo-static data flow,” IEEE Trans. Signal Pro-
cess., vol. 44, pp. 397–408, 1996.

[5] S. Verdoolaege, H. Nikolov, and T. Stefanov, “pn: a tool for improved derivation of process networks,”
EURASIP Journal on Embedded Systems, vol. 2007, January 2007.

[6] A. Pimentel, C. Erbas, and S. Polstra, “A systematic approach to exploring embedded system architectures at
multiple abstraction levels,” IEEE Transactions on Computers, vol. 55, pp. 99–112, February 2006.

[7] H. Nikolov, T. Stefanov, and E. Deprettere, “Systematic and Automated Multiprocessor System Design, Pro-
gramming, and Implementation,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 27, pp. 542–555, March 2008.

[8] S. Stuijk, M. Geilen, and T. Basten, “SDF3: SDF For Free,” in Proceedings of the 6th International Conference
on Application of Concurrency to System Design, ACSD 2006, (Los Alamitos, CA, USA), pp. 276–278, IEEE
Computer Society Press, June 2006.

28

	Overview
	Automatic Parallelization
	Design Space Exploration
	Hard-Real-Time Schedulability Analysis
	System Synthesis

	Installing Daedalus/DaedalusRT
	Prerequisites
	Obtaining the Frameworks
	Installing the Daedalus Framework
	Installing the DaedalusRT Framework
	Installing the individual tools
	Installing the PNgen Compiler
	Installing pntools
	Installing Sesame
	Installing darts
	Installing ESPAM

	Using Daedalus
	Example I: Single Application - FPGA Backend
	Using the auto-run script
	Running the Daedalus Framework manually
	Building the Project using Xilinx Tools
	Programming the FPGA and Running the Application

	Example II: Sobel filter - SystemC Backend
	Using the auto-run script
	Running the Timed SystemC Backend Manually

	Using DaedalusRT
	Example I: Multiple Applications - FPGA Backend
	Using the auto-run script
	Running the DaedalusRT Framework Manually
	Building and Running the Generated Project

	Contributing to Daedalus/DaedalusRT
	PNgen
	Building PNgen from the git repository

	pntools
	Building pntools from the git repository

	darts
	ESPAM
	Building ESPAM from the git repository

