
barvinok: User Guide
Version: barvinok-0.23

Sven Verdoolaege

April 28, 2007

Contents

1 Internal Representation of the barvinok library 3
1.1 Existing Data Structures . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Data Structures for Quasi-polynomials . . . . . . . . . . . . . . . 7
1.4 Operations on Quasi-polynomials . . . . . . . . . . . . . . . . . . 9
1.5 Generating Functions . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Counting Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.7 Auxiliary Functions . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.8 bernstein Data Structures and Functions . . . . . . . . . . . . . 17

2 Applications included in the barvinok distribution 20
2.1 barvinok count . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 barvinok enumerate . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 barvinok enumerate e . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 barvinok union . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 barvinok ehrhart . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6 polyhedron sample . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.7 polytope scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.8 lexmin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 polymake clients 26

4 Omega interface 27

5 Implementation details 29
5.1 An interior point of a polyhedron . . . . . . . . . . . . . . . . . . 29
5.2 The integer points in the fundamental parallelepiped of a simple

cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Barvinok’s decomposition of simple cones in primal space . . . . 31
5.4 Triangulation in primal space . . . . . . . . . . . . . . . . . . . . 37
5.5 Multivariate quasi-polynomials as lists of polynomials . . . . . . 37
5.6 Left inverse of an affine embedding . . . . . . . . . . . . . . . . . 39

1



5.7 Integral basis of the orthogonal complement of a linear subspace 40
5.8 Ensuring a polyhedron has only revlex-positive rays . . . . . . . 40
5.9 Parametric Volume Computation . . . . . . . . . . . . . . . . . . 42

6 Publications 44
6.1 Publications about the Library . . . . . . . . . . . . . . . . . . . 44
6.2 Publications Refering to the Library . . . . . . . . . . . . . . . . 45

List of Figures

1 The quasi-polynomial [1, 2]pp
2 + 3p + 5

2
. . . . . . . . . . . . . . . 5

2 The quasi-polynomial
(
1 + 2

{
p
2

})
p2 + 3p + 5

2
. . . . . . . . . . . 8

3 Representation of
(

3

2
x2

0x
3
1 + 2x5

0x
−7
1

)
/
(
(1 − x0x

−3
1 )(1 − x2

1)
)
. . . 12

4 Extra relational operations of occ . . . . . . . . . . . . . . . . . . 28
5 The integer points in the fundamental parallelepiped of K . . . . 30
6 Possible locations of the vector w with respect to the rays of a

3-dimensional cone. . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7 Examples of decompositions in primal space. . . . . . . . . . . . 35
8 Possible locations of w with respect to ui and uj , projected onto

a plane orthogonal to the other rays, when αiαj < 0. . . . . . . . 36
9 Possible locations of w with respect to ui and uj , projected onto

a plane orthogonal to the other rays, when αiαj > 0. . . . . . . . 36

2



1 Internal Representation of the barvinok library

Our barvinok library is built on top of PolyLib (Wilde 1993; Loechner 1999).
In particular, it reuses the implementations of the algorithm of Loechner and
Wilde (1997) for computing parametric vertices and the algorithm of Clauss and
Loechner (1998) for computing chamber decompositions. Initially, our library
was meant to be a replacement for the algorithm of Clauss and Loechner (1998),
also implemented in PolyLib, for computing quasi-polynomials. To ease the
transition of application programs we tried to reuse the existing data structures
as much as possible.

1.1 Existing Data Structures

Inside PolyLib integer values are represented by the Value data type. De-
pending on a configure option, the data type may either by a 32-bit integer, a
64-bit integer or an arbitrary precision integer using GMP. The barvinok library
requires that PolyLib is compiled with support for arbitrary precision integers.

The basic structure for representing (unions of) polyhedra is a Polyhedron.

typedef struct polyhedron {

unsigned Dimension, NbConstraints, NbRays, NbEq, NbBid;

Value **Constraint;

Value **Ray;

Value *p_Init;

int p_Init_size;

struct polyhedron *next;

} Polyhedron;

The attribute Dimension is the dimension of the ambient space, i.e., the number
of variables. The attributes Constraint and Ray point to two-dimensional
arrays of constraints and generators, respectively. The number of rows is stored
in NbConstraints and NbRays, respectively. The number of columns in both
arrays is equal to 1+Dimension+1. The first column of Constraint is either 0
or 1 depending on whether the constraint is an equality (0) or an inequality (1).
The number of equalities is stored in NbEq. If the constraint is 〈a,x〉 + c ≥ 0,
then the next columns contain the coefficients ai and the final column contains
the constant c. The first column of Ray is either 0 or 1 depending on whether
the generator is a line (0) or a vertex or ray (1). The number of lines is stored
in NbBid. Let d be the least common multiple (lcm) of the denominators of
the coordinates of a vertex v, then the next columns contain dvi and the final
column contains d. For a ray, the final column contains 0. The field next points
to the next polyhedron in the union of polyhedra. It is 0 if this is the last (or
only) polyhedron in the union. For more information on this structure, we refer
to Wilde (1993).

Quasi-polynomials are represented using the evalue and enode structures.

typedef enum { polynomial, periodic, evector } enode_type;
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typedef struct _evalue {

Value d; /* denominator */

union {

Value n; /* numerator (if denominator != 0) */

struct _enode *p; /* pointer (if denominator == 0) */

} x;

} evalue;

typedef struct _enode {

enode_type type; /* polynomial or periodic or evector */

int size; /* number of attached pointers */

int pos; /* parameter position */

evalue arr[1]; /* array of rational/pointer */

} enode;

If the field d of an evalue is zero, then the evalue is a placeholder for a pointer
to an enode, stored in x.p. Otherwise, the evalue is a rational number with
numerator x.n and denominator d. An enode is either a polynomial or a
periodic, depending on the value of type. The length of the array arr is stored
in size. For a polynomial, arr contains the coefficients. For a periodic,
it contains the values for the different residue classes modulo the parameter
indicated by pos. For a polynomial, pos refers to the variable of the polynomial.
The value of pos is 1 for the first parameter. That is, if the value of pos is 1

and the first parameter is p, and if the length of the array is l, then in case it is
a polynomial, the enode represents

arr[0] + arr[1]p + arr[2]p2 + · · · + arr[l-1]pl−1.

If it is a periodic, then it represents

[arr[0], arr[1], arr[2], . . . , arr[l-1]]p .

Note that the elements of a periodic may themselves be other periodics or
even polynomials. In our library, we only allow the elements of a periodic to
be other periodics or rational numbers. The chambers and their corresponding
quasi-polynomial are stored in Enumeration structures.

typedef struct _enumeration {

Polyhedron *ValidityDomain; /* constraints on the parameters */

evalue EP; /* dimension = combined space */

struct _enumeration *next; /* Ehrhart Polynomial,

corresponding to parameter

values inside the domain

ValidityDomain above */

} Enumeration;

For more information on these structures, we refer to Loechner (1999).
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type polynomial

size 3

pos 1

arr[0]
d 2

x.n 5

arr[1]
d 1

x.n 3

arr[2]
d 0

x.p

type periodic

size 2

pos 1

arr[0]
d 1

x.n 1

arr[1]
d 1

x.n 2

enode

enode

Figure 1: The quasi-polynomial [1, 2]pp
2 + 3p + 5

2
.

Example 1 Figure 1 is a skillful reconstruction of Figure 2 from Loechner
(1999). It shows the contents of the enode structures representing the
quasi-polynomial [1, 2]pp2 + 3p + 5

2
.

1.2 Options

The barvinok options structure contains various options that influence the
behavior of the library.

struct barvinok_options {

struct barvinok_stats *stats;

/* PolyLib options */

unsigned MaxRays;

/* NTL options */

/* LLL reduction parameter delta=LLL_a/LLL_b */

long LLL_a;

long LLL_b;

/* barvinok options */

#define BV_SPECIALIZATION_BF 2

#define BV_SPECIALIZATION_DF 1

#define BV_SPECIALIZATION_RANDOM 0

int incremental_specialization;

unsigned long max_index;

int primal;

int lookup_table;

int count_sample_infinite;
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int try_Delaunay_triangulation;

#define BV_APPROX_SIGN_NONE 0

#define BV_APPROX_SIGN_APPROX 1

#define BV_APPROX_SIGN_LOWER 2

#define BV_APPROX_SIGN_UPPER 3

int polynomial_approximation;

#define BV_APPROX_NONE 0

#define BV_APPROX_DROP 1

#define BV_APPROX_SCALE 2

#define BV_APPROX_VOLUME 3

int approximation_method;

#define BV_APPROX_SCALE_FAST (1 << 0)

#define BV_APPROX_SCALE_NARROW (1 << 1)

#define BV_APPROX_SCALE_NARROW2 (1 << 2)

#define BV_APPROX_SCALE_CHAMBER (1 << 3)

int scale_flags;

#define BV_VOL_LIFT 0

#define BV_VOL_VERTEX 1

#define BV_VOL_BARYCENTER 2

int volume_triangulate;

/* basis reduction options */

#define BV_GBR_NONE 0

#define BV_GBR_GLPK 1

#define BV_GBR_CDD 2

int gbr_lp_solver;

/* bernstein options */

#define BV_BERNSTEIN_NONE 0

#define BV_BERNSTEIN_MAX 1

#define BV_BERNSTEIN_MIN -1

int bernstein_optimize;

#define BV_BERNSTEIN_FACTORS 1

#define BV_BERNSTEIN_INTERVALS 2

int bernstein_recurse;

};

struct barvinok_options *barvinok_options_new_with_defaults();

The function barvinok options new with defaults can be used to create
a barvinok options structure with default values.

• PolyLib options
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– MaxRays

The value of MaxRays is passed to various PolyLib functions and
defines the maximum size of a table used in the double description
computation in the PolyLib function Chernikova. In earlier ver-
sions of PolyLib, this parameter had to be conservatively set to a
high number to ensure successful operation, resulting in significant
memory overhead. Our change to allow this table to grow dynami-
cally is available in recent versions of PolyLib. In these versions, the
value no longer indicates the maximal table size, but rather the size
of the initial allocation. This value may be set to 0 or left as set by
barvinok options new with defaults.

• NTL options

– LLL a

– LLL b

The values used for the reduction parameter in the call to NTL’s
implementation of Lenstra, Lenstra and Lovasz’ basis reduction al-
gorithm (LLL).

• barvinok specific options

– incremental specialization

Selects the specialization algorithm to be used. If set to 0 then a
direct specialization is performed using a random vector. Value 1

selects a depth first incremental specialization, while value 2 selects a
breadth first incremental specialization. The default is selected by the
--enable-incremental configure option. For more information we
refer to Verdoolaege (2005, Section 4.4.3).

1.3 Data Structures for Quasi-polynomials

Internally, we do not represent our quasi-polynomials as step-polynomials, but,
similarly to Loechner (1999), as polynomials with periodic numbers for coef-
ficients. However, we also allow our periodic numbers to be represented by
fractional parts of degree-1 polynomials rather than an explicit enumeration
using the periodic type. By default, the current version of barvinok uses
periodics, but this can be changed through the --enable-fractional config-
ure option. In the latter case, the quasi-polynomial using fractional parts can
also be converted to an actual step-polynomial using evalue frac2floor, but
this is not fully supported yet.

For reasons of compatibility,1 we shoehorned our representations for piece-
wise quasi-polynomials into the existing data structures. To this effect, we
introduced four new types, fractional, relation, partition and flooring.

1Also known as laziness.
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type polynomial

size 3

pos 1

arr[0]
d 2

x.n 5

arr[1]
d 1

x.n 3

arr[2]
d 0

x.p

type fractional

size 3

pos -1

arr[0]
d 0

x.p

arr[1]
d 1

x.n 1

arr[2]
d 1

x.n 2

fractional

3

-1

0

type polynomial

size 2

pos 1

arr[0]
d 1

x.n 0

arr[1]
d 2

x.n 1

enode enode

enode

Figure 2: The quasi-polynomial
(
1 + 2

{
p
2

})
p2 + 3p + 5

2
.

typedef enum { polynomial, periodic, evector, fractional,

relation, partition, flooring } enode_type;

The field pos is not used in most of these additional types and is therefore set
to -1.

The types fractional and flooring represent polynomial expressions in a
fractional part or a floor respectively. The generator is stored in arr[0], while
the coefficients are stored in the remaining array elements. That is, an enode

of type fractional represents

arr[1] + arr[2]{arr[0]} + arr[3]{arr[0]}2 + · · · + arr[l-1]{arr[0]}l−2.

An enode of type flooring represents

arr[1] + arr[2]⌊arr[0]⌋ + arr[3]⌊arr[0]⌋2 + · · · + arr[l-1]⌊arr[0]⌋l−2.

Example 2 The internal representation of the quasi-polynomial

“

1 + 2
np

2

o”

p2 + 3p +
5

2

is shown in Figure 2.

The relation type is used to represent strides. In particular, if the value of
size is 2, then the value of a relation is (in pseudo-code):

8



(value(arr[0]) == 0) ? value(arr[1]) : 0

If the size is 3, then the value is:

(value(arr[0]) == 0) ? value(arr[1]) : value(arr[2])

The type of arr[0] is typically fractional.
Finally, the partition type is used to represent piecewise quasi-polynomials.

We prefer to encode this information inside evalues themselves rather than
using Enumerations since we want to perform the same kinds of operations
on both quasi-polynomials and piecewise quasi-polynomials. An enode of type
partition may not be nested inside another enode. The size of the array is
twice the number of “chambers”. Pointers to chambers are stored in the even
slots, whereas pointer to the associated quasi-polynomials are stored in the odd
slots. To be able to store pointers to chambers, the definition of evalue was
changed as follows.

typedef struct _evalue {

Value d; /* denominator */

union {

Value n; /* numerator (if denominator > 0) */

struct _enode *p; /* pointer (if denominator == 0) */

Polyhedron *D; /* domain (if denominator == -1) */

} x;

} evalue;

Note that we allow a “chamber” to be a union of polyhedra as discussed in
Verdoolaege (2005, Section 4.5.1). Chambers with extra variables, i.e., those of
Verdoolaege (2005, Section 4.6.5), are only partially supported. The field pos

is set to the actual dimension, i.e., the number of parameters.

1.4 Operations on Quasi-polynomials

In this section we discuss some of the more important operations on evalues
provided by the barvinok library. Some of these operations are extensions of
the functions from PolyLib with the same name.

void eadd(const evalue *e1,evalue *res);

void emul (evalue *e1, evalue *res );

The functions eadd and emul takes two (pointers to) evalues e1 and res and
computes their sum and product respectively. The result is stored in res, over-
writing (and deallocating) the original value of res. It is an error if exactly one
of the arguments of eadd is of type partition (unless the other argument is 0).
The addition and multiplication operations are described in Verdoolaege (2005,
Section 4.5.1) and Verdoolaege (2005, Section 4.5.2) respectively.

The function eadd is an extension of the function new eadd from Seghir
(2002). Apart from supporting the additional types from Section 1.3, the new
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version also additionally imposes an order on the nesting of different enodes.
Without such an ordering, evalues could be constructed representing for exam-
ple

(0y0 + (0x0 + 1x1)y1)x0 + (0y0 − 1y1)x1,

which is just a funny way of saying 0.

void eor(evalue *e1, evalue *res);

The function eor implements the union operation from Verdoolaege (2005, Sec-
tion 4.5.3). Both arguments are assumed to correspond to indicator functions.

evalue *esum(evalue *E, int nvar);

The function esum performs the summation operation from Verdoolaege (2005,
Section 4.5.4). The piecewise step-polynomial represented by E is summated
over its first nvar variables. Note that E must be zero or of type partition.
The function returns the result in a newly allocated evalue. Note also that E

needs to have been converted from fractionals to floorings using the function
evalue frac2floor.

void evalue_frac2floor(evalue *e);

This function also ensures that the arguments of the floorings are positive
in the relevant chambers. It currently assumes that the argument of each
fractional in the original evalue has a minimum in the corresponding cham-
ber.

double compute_evalue(const evalue *e, Value *list_args);

Value *compute_poly(Enumeration *en,Value *list_args);

evalue *evalue_eval(const evalue *e, Value *values);

The functions compute evalue, compute poly and evalue eval evaluate a
(piecewise) quasi-polynomial at a certain point. The argument list_args

points to an array of Values that is assumed to be long enough. The double

return value of compute evalue is inherited from PolyLib.

void print_evalue(FILE *DST, const evalue *e, char **pname);

The function print evalue dumps a human-readable representation to the
stream pointed to by DST. The argument pname points to an array of char-
acter strings representing the parameter names. The array is assumed to be
long enough.

int eequal(const evalue *e1, const evalue *e2);

The function eequal return true (1) if its two arguments are structurally iden-
tical. I.e., it does not check whether the two (piecewise) quasi-polynomial rep-
resent the same function.
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void reduce_evalue (evalue *e);

The function reduce evalue performs some simplifications on evalues. Here,
we only describe the simplifications that are directly related to the internal
representation. Some other simplifications are explained in Verdoolaege (2005,
Section 4.7.2). If the highest order coefficients of a polynomial, fractional or
flooring are zero (possibly after some other simplifications), then the size of
the array is reduced. If only the constant term remains, i.e., the size is reduced
to 1 for polynomial or to 2 for the other types, then the whole node is replaced
by the constant term. Additionally, if the argument of a fractional has been
reduced to a constant, then the whole node is replaced by its partial evaluation.
A relation is similarly reduced if its second branch or both its branches are
zero. Chambers with zero associated quasi-polynomials are discarded from a
partition.

1.5 Generating Functions

The representation of rational generating functions uses some basic types from
the NTL library (Shoup 2004) for representing arbitrary precision integers (ZZ)
as well as vectors (vec ZZ) and matrices (mat ZZ) of such integers. We further
introduces a type QQ for representing a rational number and use vectors (vec QQ)
of such numbers.

struct QQ {

ZZ n;

ZZ d;

};

NTL_vector_decl(QQ,vec_QQ);

Each term in a rational generating function is represented by a short rat

structure.

struct short_rat {

struct {

/* rows: terms in numerator */

vec_QQ coeff;

mat_ZZ power;

} n;

struct {

/* rows: factors in denominator */

mat_ZZ power;

} d;

};

The fields n and d represent the numerator and the denominator respectively.
Note that in our implementation we combine terms with the same denominator.
In the numerator, each element of coeff and each row of power represents a
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n.coeff 3 2

2 1

n.power 2 3

5 -7

d.power 1 -3
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short rat

Figure 3: Representation of
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single such term. The vector coeff contains the rational coefficients αi of each
term. The columns of power correspond to the powers of the variables. In the
denominator, each row of power corresponds to the power bij of a factor in the
denominator.

Example 3 Figure 3 shows the internal representation of

3

2
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0x
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1
)(1 − x2
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.

The whole rational generating function is represented by a gen fun structure.

typedef std::set<short_rat *,

short_rat_lex_smaller_denominator > short_rat_list;

struct gen_fun {

short_rat_list term;

Polyhedron *context;

void add(const QQ& c, const vec_ZZ& num, const mat_ZZ& den);

void add(short_rat *r);

void add(const QQ& c, const gen_fun *gf);

void substitute(Matrix *CP);

gen_fun *Hadamard_product(const gen_fun *gf,

barvinok_options *options);

void print(std::ostream& os,

unsigned int nparam, char **param_name) const;

operator evalue *() const;

ZZ coefficient(Value* params, barvinok_options *options) const;

void coefficient(Value* params, Value* c) const;

gen_fun(Polyhedron *C = NULL);

gen_fun(Value c);

gen_fun(const gen_fun *gf);
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~gen_fun();

};

A new gen fun can be constructed either as empty rational generating function
(possibly with a given context C), as a copy of an existing rational generating
function gf, or as constant rational generating function with value for the con-
stant term specified by c.
The first gen fun::add method adds a new term to the rational generating
function, described by the coefficient c, the numerator num and the denomina-
tor den. It makes all powers in the denominator lexico-positive, orders them
in lexicographical order and inserts the new term in term according to the lex-
icographical order of the combined powers in the denominator. The second
gen fun::add method adds c times gf to the rational generating function.
The method gen fun::operator evalue * performs the conversion from ratio-
nal generating function to piecewise step-polynomial explained in Verdoolaege
(2005, Section 4.5.5). The Polyhedron context is the superset of all points
where the enumerator is non-zero used during this conversion, i.e., it is the set
Q from Verdoolaege (2005, Equation 4.31). If context is NULL the maximal
allowed context is assumed, i.e., the maximal region with lexico-positive rays.
The method gen fun::coefficient computes the coefficient of the term with
power given by params and stores the result in c. This method performs essen-
tially the same computations as gen fun::operator evalue *, except that it
adds extra equality constraints based on the specified values for the power.
The method gen fun::substitute performs the monomial substitution speci-
fied by the homogeneous matrix CP that maps a set of “compressed parameters”
(Meister 2004) to the original set of parameters. That is, if we are given a ratio-
nal generating function G(z) that encodes the explicit function g(i′), where i′ are
the coordinates of the transformed space, and CP represents the map i = Ai′ +a
back to the original space with coordinates i, then this method transforms the
rational generating function to F (x) encoding the same explicit function f(i),
i.e.,

f(i) = f(Ai′ + a) = g(i′).

This means that the coefficient of the term xi = xAi′+a in F (x) should be equal
to the coefficient of the term zi′ in G(z). In other words, if

G(z) =
∑

i

ǫi

zvi

∏

j(1 − zbij )

then

F (x) =
∑

i

ǫi

xAvi+a

∏

j(1 − xAbij )
.

The method gen fun::Hadamard product computes the Hadamard product of
the current rational generating function with the rational generating function
gf, as explained in Verdoolaege (2005, Section 4.5.2).
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1.6 Counting Functions

Our library provides essentially three different counting functions: one for non-
parametric polytopes, one for parametric polytopes and one for parametric sets
with existential variables. The old versions of these functions have a “MaxRays”
argument, while the new versions have a more general barvinok options argu-
ment. For more information on barvinok options, see Section 1.2.

void barvinok_count(Polyhedron *P, Value* result,

unsigned NbMaxCons);

void barvinok_count_with_options(Polyhedron *P, Value* result,

struct barvinok_options *options);

The function barvinok count or barvinok count with options enumerates
the non-parametric polytope P and returns the result in the Value pointed to
by result, which needs to have been allocated and initialized. If P is a union,
then only the first set in the union will be taken into account. For the meaning
of the argument NbMaxCons, see the discussion on MaxRays in Section 1.2.

The function barvinok enumerate for enumerating parametric polytopes
was meant to be a drop-in replacement of PolyLib’s Polyhedron Enumerate

function. Unfortunately, the latter has been changed to accept an extra argu-
ment in recent versions of PolyLib as shown below.

Enumeration* barvinok_enumerate(Polyhedron *P, Polyhedron* C,

unsigned MaxRays);

extern Enumeration *Polyhedron_Enumerate(Polyhedron *P,

Polyhedron *C, unsigned MAXRAYS, char **pname);

The argument MaxRays has the same meaning as the argument NbMaxCons

above. The argument P refers to the (d + n)-dimensional polyhedron defin-
ing the parametric polytope. The argument C is an n-dimensional polyhedron
containing extra constraints on the parameter space. Its primary use is to in-
dicate how many of the dimensions in P refer to parameters as any constraint
in C could equally well have been added to P itself. Note that the dimensions
referring to the parameters should appear last. If either P or C is a union,
then only the first set in the union will be taken into account. The result is
a newly allocated Enumeration. As an alternative we also provide a function
(barvinok enumerate ev or barvinok enumerate with options) that returns
an evalue.

evalue* barvinok_enumerate_ev(Polyhedron *P, Polyhedron* C,

unsigned MaxRays);

evalue* barvinok_enumerate_with_options(Polyhedron *P,

Polyhedron* C, struct barvinok_options *options);

For enumerating parametric sets with existentially quantified variables, we
provide two functions: barvinok enumerate e and barvinok enumerate pip.
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evalue* barvinok_enumerate_e(Polyhedron *P,

unsigned exist, unsigned nparam, unsigned MaxRays);

evalue* barvinok_enumerate_e_with_options(Polyhedron *P,

unsigned exist, unsigned nparam,

struct barvinok_options *options);

evalue *barvinok_enumerate_pip(Polyhedron *P,

unsigned exist, unsigned nparam, unsigned MaxRays);

evalue* barvinok_enumerate_pip_with_options(Polyhedron *P,

unsigned exist, unsigned nparam,

struct barvinok_options *options);

evalue *barvinok_enumerate_scarf(Polyhedron *P,

unsigned exist, unsigned nparam,

struct barvinok_options *options);

The first function tries the simplification rules from Verdoolaege (2005, Sec-
tion 4.6.2) before resorting to the method based on Parametric Integer Pro-
gramming (PIP) from Verdoolaege (2005, Section 4.6.3). The second function
immediately applies the technique from Verdoolaege (2005, Section 4.6.3). The
argument exist refers to the number of existential variables, whereas the argu-
ment nparam refers to the number of parameters. The order of the dimensions
in P is: counted variables first, then existential variables and finally the parame-
ters. The function barvinok enumerate scarf performs the same computation
as the function barvinok enumerate scarf series below, but produces an ex-
plicit representation instead of a generating function.

gen_fun * barvinok_series(Polyhedron *P, Polyhedron* C,

unsigned MaxRays);

gen_fun * barvinok_series_with_options(Polyhedron *P,

Polyhedron* C, barvinok_options *options);

gen_fun *barvinok_enumerate_scarf_series(Polyhedron *P,

unsigned exist, unsigned nparam,

barvinok_options *options);

The function barvinok series or barvinok series with options enumerates
parametric polytopes in the form of a rational generating function. The poly-
hedron P is assumed to have only revlex-positive rays.
The function barvinok enumerate scarf series computes a generating func-
tion for the number of point in the parametric set defined by P with exist

existentially quantified variables, which is assumed to be 2. This function im-
plements the technique of Scarf and Woods (2006) using the neighborhood com-
plex description of Scarf (1981). It is currently restricted to problems with 3 or
4 constraints involving the existentially quantified variables.

1.7 Auxiliary Functions

In this section we briefly mention some auxiliary functions available in the
barvinok library.

15



void Polyhedron_Polarize(Polyhedron *P);

The function Polyhedron Polarize polarizes its argument and is explained in
Verdoolaege (2005, Section 4.4.2).

int unimodular_complete(Matrix *M, int row);

The function unimodular complete extends the first row rows of M with an
integral basis of the orthogonal complement as explained in Section 5.7. Returns
non-zero if the resulting matrix is unimodular.

int DomainIncludes(Polyhedron *D1, Polyhedron *D2);

The function DomainIncludes extends the function PolyhedronIncludes pro-
vided by PolyLib to unions of polyhedra. It checks whether every polyhedron
in the union D2 is included in some polyhedron of D1.

Polyhedron *DomainConstraintSimplify(Polyhedron *P,

unsigned MaxRays);

The value returned by DomainConstraintSimplify is a pointer to a newly
allocated Polyhedron that contains the same integer points as its first argument
but possibly has simpler constraints. Each constraint g〈a,x〉 ≥ c is replaced by

〈a,x〉 ≥
⌈

c
g

⌉

, where g is the greatest common divisor (gcd) of the coefficients in

the original constraint. The Polyhedron pointed to by P is destroyed.

Polyhedron* Polyhedron_Project(Polyhedron *P, int dim);

The function Polyhedron Project projects P onto its last dim dimensions.

Matrix *left_inverse(Matrix *M, Matrix **Eq);

The left inverse function computes the left inverse of M as explained in Sec-
tion 5.6.

Matrix *Polyhedron_Reduced_Basis(Polyhedron *P,

struct barvinok_options *options);

Polyhedron Reduced Basis computes a generalized reduced basis of P, which is
assumed to be a polytope, using the algorithm of Cook et al. (1993). The basis
vectors are stored in the rows of the matrix returned. This function currently
uses GLPK (Makhorin 2006) to perform the linear optimizations and so is only
available if you have GLPK.

Vector *Polyhedron_Sample(Polyhedron *P,

struct barvinok_options *options);

Polyhedron Sample returns an integer point of P or NULL if P contains no integer
points. The integer point is found using the algorithm of Cook et al. (1993) and
uses Polyhedron Reduced Basis to compute the reduced bases and therefore
also requires GLPK.
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1.8 bernstein Data Structures and Functions

The bernstein library used GiNaC data structures to represent the data it ma-
nipulates. In particular, a polynomial is stored in a GiNaC::ex, a list of variable
or parameter names is stored in a GiNaC::exvector, while the parametric ver-
tices or generators are stored in a GiNaC::matrix, where the rows refer to the
generators and the columns to the coordinates of each generator.

namespace bernstein {

GiNaC::exvector constructParameterVector(

const char * const *param_names, unsigned nbParams);

GiNaC::exvector constructVariableVector(unsigned nbVariables,

const char *prefix);

}

The functions constructParameterVector and constructVariableVector con-
struct a list of variable names either from a list of char *s or by suffixing
prefix with a number starting from 0. Such lists are needed for the functions
domainVertices, bernsteinExpansion and evalue bernstein coefficients.

namespace bernstein {

GiNaC::matrix domainVertices(Param_Polyhedron *PP, Param_Domain *Q,

const GiNaC::exvector& params);

}

The function domainVertices constructs a matrix representing the generators
(in this case vertices) of the Param Polyhedron PP for the Param Domain Q, to
be used in a call to bernsteinExpansion. The elements of params are used in
the resulting matrix to refer to the parameters.

namespace bernstein {

GiNaC::lst bernsteinExpansion(const GiNaC::matrix& vert,

const GiNaC::ex& poly,

const GiNaC::exvector& vars,

const GiNaC::exvector& params);

}

The function bernsteinExpansion computes the Bernstein coefficients of the
polynomial poly over the parametric polytope that is the convex hull of the rows
in vert. The vectors vars and params identify the variables (i.e., the coordi-
nates of the space in which the parametric polytope lives) and the parameters,
respectively.

namespace bernstein {

typedef std::pair< Polyhedron *, GiNaC::lst > guarded_lst;

struct piecewise_lst {
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const GiNaC::exvector vars;

std::vector<guarded_lst> list;

/* 0: just collect terms

* 1: remove obviously smaller terms (maximize)

* -1: remove obviously bigger terms (minimize)

*/

int sign;

piecewise_lst(const GiNaC::exvector& vars);

piecewise_lst& combine(const piecewise_lst& other);

void maximize();

void simplify_domains(Polyhedron *ctx, unsigned MaxRays);

GiNaC::numeric evaluate(const GiNaC::exvector& values);

void add(const GiNaC::ex& poly);

}

}

A piecewise list structure represents a list of (disjoint) polyhedral domains,
each with an associated GiNaC::lst of polynomials. The vars member contains
the variable names of the dimensions of the polyhedral domains.
piecewise lst::combine computes the common refinement of the polyhedral
domains in this and other and associates to each of the resulting subdomains
the union of the sets of polynomials associated to the domains from this and
other that contain the subdomain. If the signs of the piecewise lists are not
zero, then the (obviously) redundant elements of these sets are removed from
the union. The result is stored in this.
piecewise lst::maximize removes polynomials from domains that evaluate to
a value that is smaller than or equal to the value of some other polynomial as-
sociated to the same domain for each point in the domain.
piecewise lst::evaluate “evaluates” the piecewise list by looking for the
domain (if any) that contains the point given by values and computing the
maximal value attained by any of the associated polynomials evaluated at that
point.
piecewise lst::add adds the polynomial poly to each of the polynomial as-
sociated to each of the domains.
piecewise lst::simplify domains “simplifies” the domains by removing the
constraints that are implied by the constraints in ctx, basically by calling
PolyLib’s DomainSimplify. Note that you should only do this at the end
of your computation. In particular, you do not want to call this method be-
fore calling piecewise lst::maximize, since this method will then have less
information on the domains to exploit.

namespace barvinok {

bernstein::piecewise_lst *evalue_bernstein_coefficients(

bernstein::piecewise_lst *pl_all, evalue *e,
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Polyhedron *ctx, const GiNaC::exvector& params);

bernstein::piecewise_lst *evalue_bernstein_coefficients(

bernstein::piecewise_lst *pl_all, evalue *e,

Polyhedron *ctx, const GiNaC::exvector& params,

barvinok_options *options);

}

The evalue bernstein coefficients function will compute the Bernstein co-
efficients of the piecewise parametric polynomial stored in the evalue e. The
params vector specifies the names to be used for the parameters, while the
context Polyhedron ctx specifies extra constraints on the parameters. The di-
mension of ctx needs to be the same as the length of params. The evalue e is
assumed to be of type partition and each of the domains in this partition

is interpreted as a parametric polytope in the given parameters. The proce-
dure will compute the Bernstein coefficients of the associated polynomial over
each such parametric polytope. The resulting bernstein::piecewise lst col-
lects the Bernstein coefficients over all parametric polytopes in e. If pl_all
is not NULL then this list will be combined with the list computed by calling
piecewise lst::combine. If bernstein optimize is set to BV BERNSTEIN MAX

in options, then this combination will remove obviously redundant Bernstein
coefficients with respect to upper bound computation and similarly for BV BERNSTEIN MIN.
The default (BV BERNSTEIN NONE) is to only remove duplicate Bernstein coeffi-
cients.
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2 Applications included in the barvinok distri-

bution

This section describes some application programs provided by the barvinok li-
brary, available from http://freshmeat.net/projects/barvinok/. For com-
pilation instructions we refer to the README file included in the distribution.

Common option to all programs:
--version -V print version
--help -? list available options

2.1 barvinok count

The program barvinok count enumerates a non-parametric polytope. It takes
one polytope in PolyLib notation as input and prints the number of integer
points in the polytope. The PolyLib notation corresponds to the internal repre-
sentation of Polyhedrons as explained in Section 1.1. The first line of the input
contains the number of rows and the number of columns in the Constraint

matrix. The rest of the input is composed of the elements of the matrix. Recall
that the number of columns is two more than the number of variables, where
the extra first columns is one or zero depending on whether the constraint is an
inequality (≥ 0) or an equality (= 0). The next columns contain the coefficients
of the variables and the final column contains the constant in the constraint.
E.g., the set S = { s | s ≥ 0 ∧ 2s ≤ 13 } from Verdoolaege (2005, Example 38 on
page 134) corresponds to the following input and output.

> cat S

2 3

1 1 0

1 -2 13

> ./barvinok_count < S

POLYHEDRON Dimension:1

Constraints:2 Equations:0 Rays:2 Lines:0

Constraints 2 3

Inequality: [ 1 0 ]

Inequality: [ -2 13 ]

Rays 2 3

Vertex: [ 0 ]/1

Vertex: [ 13 ]/2

7

Note that if you use PolyLib version 5.22.0 or newer then the output may look
slightly different as the computation of the Rays may have been postponed to a
later stage. The program latte2polylib.pl can be used to convert a polytope
from LattE (De Loera et al. 2003) notation to PolyLib notation.

As an alternative to the constraints based input, the input polytope may
also be specified by its Ray matrix. The first line of the input contains the
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single word vertices. The second line contains the number of rows and the
number of columns in the Ray matrix. The rest of the input is composed of the
elements of the matrix. Recall that the number of columns is two more than
the number of variables, where the extra first columns is one or zero depending
on whether the ray is a line or not. The next columns contain the numerators
of the coordinates and the final column contains the denominator of the vertex
or 0 for a ray. E.g., the above set can also be described as

vertices

2 3

1 0 1

1 13 2

2.2 barvinok enumerate

The program barvinok enumerate enumerates a parametric polytope as a piece-
wise step-polynomial or rational generating function. It takes two polytopes in
PolyLib notation as input, optionally followed by a list of parameter names.
The two polytopes refer to arguments P and C of the corresponding function.
(See Section 1.6.) The following example was taken by Loechner (1999) from
Loechner (1997, Chapter II.2).

> cat loechner

# Dimension of the matrix:

7 7

# Constraints:

# i j k P Q cte

1 1 0 0 0 0 0 # 0 <= i

1 -1 0 0 1 0 0 # i <= P

1 0 1 0 0 0 0 # 0 <= j

1 1 -1 0 0 0 0 # j <= i

1 0 0 1 0 0 0 # 0 <= k

1 1 -1 -1 0 0 0 # k <= i-j

0 1 1 1 0 -1 0 # Q = i + j + k

# 2 parameters, no constraints.

0 4

> ./barvinok_enumerate < loechner

POLYHEDRON Dimension:5

Constraints:6 Equations:1 Rays:5 Lines:0

Constraints 6 7

Equality: [ 1 1 1 0 -1 0 ]

Inequality: [ 0 1 1 1 -1 0 ]

Inequality: [ 0 1 0 0 0 0 ]

Inequality: [ 0 0 1 0 0 0 ]

21



Inequality: [ 0 -2 -2 0 1 0 ]

Inequality: [ 0 0 0 0 0 1 ]

Rays 5 7

Ray: [ 1 0 1 1 2 ]

Ray: [ 1 1 0 1 2 ]

Vertex: [ 0 0 0 0 0 ]/1

Ray: [ 0 0 0 1 0 ]

Ray: [ 1 0 0 1 1 ]

POLYHEDRON Dimension:2

Constraints:1 Equations:0 Rays:3 Lines:2

Constraints 1 4

Inequality: [ 0 0 1 ]

Rays 3 4

Line: [ 1 0 ]

Line: [ 0 1 ]

Vertex: [ 0 0 ]/1

- P + Q >= 0

2P - Q >= 0

1 >= 0

( -1/2 * P^2 + ( 1 * Q + 1/2 )

* P + ( -3/8 * Q^2 + ( -1/2 * {( 1/2 * Q + 0 )

} + 1/4 )

* Q + ( -5/4 * {( 1/2 * Q + 0 )

} + 1 )

)

)

Q >= 0

P - Q -1 >= 0

1 >= 0

( 1/8 * Q^2 + ( -1/2 * {( 1/2 * Q + 0 )

} + 3/4 )

* Q + ( -5/4 * {( 1/2 * Q + 0 )

} + 1 )

)

The output corresponds to






− 1

2
P 2 + PQ + 1

2
P − 3

8
Q2 +

(
1

4
− 1

2

{
1

2
Q

})
Q + 1 − 5

4

{
1

2
Q

}

if P ≤ Q ≤ 2P
1

8
Q2 +

(
3

4
− 1

2

{
1

2
Q

})
− 5

4

{
1

2
Q

}
if 0 ≤ Q ≤ P − 1.

The following is an example of Petr Lisonĕk.

> cat petr

4 6
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1 -1 -1 -1 1 0

1 1 -1 0 0 0

1 0 1 -1 0 0

1 0 0 1 0 -1

0 3

n

> ./barvinok_enumerate --series < petr

POLYHEDRON Dimension:4

Constraints:5 Equations:0 Rays:5 Lines:0

Constraints 5 6

Inequality: [ -1 -1 -1 1 0 ]

Inequality: [ 1 -1 0 0 0 ]

Inequality: [ 0 1 -1 0 0 ]

Inequality: [ 0 0 1 0 -1 ]

Inequality: [ 0 0 0 0 1 ]

Rays 5 6

Ray: [ 1 1 1 3 ]

Ray: [ 1 1 0 2 ]

Ray: [ 1 0 0 1 ]

Ray: [ 0 0 0 1 ]

Vertex: [ 1 1 1 3 ]/1

POLYHEDRON Dimension:1

Constraints:1 Equations:0 Rays:2 Lines:1

Constraints 1 3

Inequality: [ 0 1 ]

Rays 2 3

Line: [ 1 ]

Vertex: [ 0 ]/1

(n^3)/((1-n) * (1-n) * (1-n^2) * (1-n^3))

Options:
--floor -f convert fractionals to floorings
--convert -c convert fractionals to periodics
--series -s compute rational generating function instead of piece-

wise step-polynomial
--explicit -e convert computed rational generating function to a

piecewise step-polynomial

2.3 barvinok enumerate e

The program barvinok enumerate e enumerates a parametric projected set.
It takes a single polytope in PolyLib notation as input, followed by two lines
indicating the number or existential variables and the number of parameters
and optionally followed by a list of parameter names. The syntax for the line
indicating the number of existential variables is the letter E followed by a space
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and the actual number. For indicating the number of parameters, the letter P

is used. The following example corresponds to Verdoolaege (2005, Example 36
on page 129).

> cat projected

5 6

# k i j p cst

1 0 1 0 0 -1

1 0 -1 0 0 8

1 0 0 1 0 -1

1 0 0 -1 1 0

0 -1 6 9 0 -7

E 2

P 1

> ./barvinok_enumerate_e <projected

POLYHEDRON Dimension:4

Constraints:5 Equations:1 Rays:4 Lines:0

Constraints 5 6

Equality: [ 1 -6 -9 0 7 ]

Inequality: [ 0 1 0 0 -1 ]

Inequality: [ 0 -1 0 0 8 ]

Inequality: [ 0 0 1 0 -1 ]

Inequality: [ 0 0 -1 1 0 ]

Rays 4 6

Vertex: [ 50 8 1 1 ]/1

Ray: [ 0 0 0 1 ]

Ray: [ 9 0 1 1 ]

Vertex: [ 8 1 1 1 ]/1

exist: 2, nparam: 1

P -3 >= 0

1 >= 0

( 3 * P + 10 )

P -1 >= 0

- P + 2 >= 0

( 8 * P + 0 )

Options:
--floor -f convert fractionals to floorings
--convert -c convert fractionals to periodics
--omega -o use Omega as a preprocessor
--pip -p call barvinok enumerate pip instead of

barvinok enumerate e
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2.4 barvinok union

The program barvinok union enumerates a union of parametric polytopes. It
takes as input the number of parametric polytopes in the union, the polytopes
in combined data and parameter space in PolyLib notation, the context in
parameter space in PolyLib notation and optionally a list of parameter names.

Options:
--series -s compute rational generating function instead of piece-

wise step-polynomial

2.5 barvinok ehrhart

The program barvinok ehrhart computes the Ehrhart quasi-polynomial of a
polytope P , i.e., a quasi-polynomial in n that evaluates to the number of integer
points in the dilation of P by a factor n. The input is the same as that of
barvinok count, except that it may be followed by the variable name. The
functionality is the same as running barvinok enumerate on the cone over P
placed at n = 1.

Options:
--floor -f convert fractionals to floorings
--convert -c convert fractionals to periodics
--series -s compute Ehrhart series instead of Ehrhart quasi-

polynomial

2.6 polyhedron sample

The program polyhedron sample takes a polytope in PolyLib notation and
prints an integer point in the polytope if there is one. The point is computed
using Polyhedron Sample.

2.7 polytope scan

The program polytope scan takes a polytope in PolyLib notation and prints a
list of all integer points in the polytope. Unless the --direct options is given,
the order is based on the reduced basis computed with Polyhedron Reduced Basis.

Options:
--direct -d list the points in the lexicographical order

2.8 lexmin

The program lexmin implements an algorithm for performing PIP based on
rational generating functions and provides an alternative for the technique of
Feautrier (1988), which is based on cutting planes (Gomory 1963). The input is
the same as that of the example program from piplib (Feautrier 2006), except
that the value for the “big parameter” needs to be −1, since there is no need
for big parameters, and it does not read any options from the input file.
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3 polymake clients

The barvinok distribution includes a couple of polymake (Gawrilow and Joswig
2000) clients in the polymake subdir.

• lattice points <file>

Computes the property LATTICE POINTS of a polytope, the number of
lattice points in the polytope.

• h star vector <file>

Computes the property H STAR VECTOR of a lattice polytope, the h∗-vector
of the polytope (Stanley 1993).
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4 Omega interface

The barvinok distribution includes an interface to Omega (Kelly et al. 1996b)
occ, an extension of oc (Kelly et al. 1996a). The extension adds the operations
shown in Figure 4. Here are some examples:

symbolic n, m;

P := { [i,j] : 0 <= i <= n and i <= j <= m };

card P;

P := {[i,j] : 0 <= i < 4*n-1 and 0 <= j < n and

n-1 <= i+j <= 3*n-2 };

C1 := {[i,j] : 0 <= i < 4*n-1 and 0 <= j < n and

2*n-1 <= i+j <= 4*n-2 and i <= 2*n-1 };

count_lexsmaller P within C1;

vertices C1;

bmax { [i] -> 2*n*i - n*n + 3*n - 1/2*i*i - 3/2*i-1 :

(exists j : 0 <= i < 4*n-1 and 0 <= j < n and

2*n-1 <= i+j <= 4*n-2 and i <= 2*n-1 ) };
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Name Syntax Explanation
Card card r Computes the number of integer points

in r and prints the result to standard
output

Ranking ranking r Computes the rank function of r and
prints the result to standard output
(Loechner et al. 2002; Turjan et al.
2002)

Predecessors count lexsmaller

r within d
Computes a function from the elements
of d to the number of elements of r that
are lexicographically smaller than that
element and prints the result to stan-
dard output.

Vertices vertices r Computes the parametric vertices of r
using PolyLib (Loechner 1999).

Bernstein bmax f Computes the Bernstein coefficients of
the function f over its domain and re-
moves the redundant coefficients by call-
ing piecewise lst::maximize. The
results are printed to standard output.
See the example for how to specify the
function f .

Figure 4: Extra relational operations of occ
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5 Implementation details

5.1 An interior point of a polyhedron

We often need a point that lies in the interior of a polyhedron. The function
inner point implements the following algorithm. Each polyhedron P can be
written as the sum of a polytope P ′ and a cone C (the recession cone or charac-
teristic cone of P ). Adding a positive multiple of the sum of the extremal rays
of C to the barycenter

1

N

∑

i

vi(p)

of P ′, where N is the number of vertices, results in a point in the interior of P .

5.2 The integer points in the fundamental parallelepiped

of a simple cone

This section is based on Barvinok (1992, Lemma 5.1) and De Loera and Köppe
(2006).

In this section we will deal exclusively with simple cones, i.e. d-dimensional
cones with d extremal rays and d facets. Some of the facets of these cones may be
open. Since we will mostly be dealing with cones in their explicit representation,
we will have occasion to speak of “open rays”, by which we will mean that the
facet not containing the ray is open. (There is only one such facet because the
cone is simple.)

Definition 5.1 (Fundamental parallelepiped) Let K = v + pos {ui } be a
closed (shifted) cone, then the fundamental parallelepiped Π of K is

Π = v +

{
∑

i

αiui | 0 ≤ αi < 1

}

.

If some of the rays ui of K are open, then the constraints on the corresponding
coefficient αi are such that 0 < αi ≤ 1.

Lemma 5.2 (Integer points in the fundamental parallelepiped of a simple cone)
Let K = v + pos {ui } be a closed simple cone and let A be the matrix with the
generators ui of K as rows. Furthermore let V AW−1 = S = diag s be the
Smith Normal Form (SNF) of A. Then the integer points in the fundamental
parallelepiped of K are given by

wT = vT +
{
(kT W − vT )A−1

}
A (1)

= vT +

d∑

i=1






〈

d∑

j=1

kjw
T
j − vT ,u∗

i 〉






ui,

where u∗
i are the columns of A−1 and kj ∈ Z ranges over 0 ≤ kj < sj.
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• •

Figure 5: The integer points in the fundamental parallelepiped of K

Proof Since 0 ≤ {x} < 1, it is clear that each such w lies inside the fundamen-
tal parallelepiped. Furthermore,

wT = vT +
{
(kT W − vT )A−1

}
A

= vT +
(
(kT W − vT )A−1 −

⌊
(kT W − vT )A−1

⌋)
A

= kT W
︸ ︷︷ ︸

∈Z1×d

+
⌊
(kT W − vT )A−1

⌋

︸ ︷︷ ︸

∈Z1×d

A
︸︷︷︸

∈Zd×d

∈ Z1×d.

Finally, if two such w are equal, i.e., w1 = w2, then

0T = wT

1 − wT

2 = kT

1 W − kT

2 W + pT A

= (kT

1 − kT

2 ) W + pT V −1SW,

with p ∈ Zd, or k1 ≡ k2 mod s, i.e., k1 = k2. Since detS = detA, we obtain
all points in the fundamental parallelepiped by taking all k ∈ Zd satisfying
0 ≤ kj < sj . �

If the cone K is not closed then the coefficients of the open rays should be
in (0, 1] rather than in [0, 1). In (1), we therefore need to replace the fractional
part {x} = x − ⌊x⌋ by {{x}} = x − ⌈x − 1⌉ for the open rays.

Example 4 Let K be the cone

K =

»

0
0

–

+ pos

 »

2
1

–

,

»

0
−1

– ff

,
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shown in Figure 5. Then

A =

»

2 1
0 −1

–

A−1 =

»

1/2 1/2
0 −1

–

and
»

1 0
1 1

– »

2 1
0 −1

–

=

»

1 0
0 2

– »

2 1
1 0

–

.

We have det A = det S = 2 and kT
1 =

ˆ

0 0
˜

and kT
2 =

ˆ

0 1
˜

. Therefore,

w
T

1 =



ˆ

0 0
˜

»

2 1
1 0

– »

1/2 1/2
0 −1

–ff »

2 1
0 −1

–

=
ˆ

0 0
˜

and

w
T

2 =



ˆ

0 1
˜

»

2 1
1 0

– »

1/2 1/2
0 −1

–ff »

2 1
0 −1

–

=
ˆ

1/2 1/2
˜

»

2 1
0 −1

–

=
ˆ

1 0
˜

.

5.3 Barvinok’s decomposition of simple cones in primal

space

As described by De Loera et al. (2004), the first implementation of Barvinok’s
counting algorithm applied Barvinok’s decomposition (Barvinok 1994) in the
dual space. Brion’s polarization trick (Brion 1988) then ensures that you do
not need to worry about lower-dimensional faces in the decomposition. Another
way of avoiding the lower-dimensional faces, in the primal space, is to perturb
the vertex of the cone such that none of the lower-dimensional face encountered
contain any integer points (Köppe 2007). In this section, we describe another
technique that is based on allowing some of the facets of the cone to be open.

The basic step in Barvinok’s decomposition is to replace a d-dimensional
simple cone K = pos {ui }

d
i=1

⊂ Qd by a signed sum of (at most) d cones
Kj with a smaller determinant (in absolute value). The cones are obtained
by successively replacing each generator of K by an appropriately chosen w =
∑d

i=1
αiui, i.e.,

Kj = pos
(

{ui }
d
i=1

\ {uj } ∪ {w }
)

. (2)

To see that we can use these Kj to perform a decomposition, rearrange the ui

such that for all 1 ≤ i ≤ k we have αi < 0 and for all k + 1 ≤ i ≤ d′ we have
αi > 0, with d − d′ the number of zero αi. We may assume k < d′; otherwise
replace w ∈ B by −w ∈ B. We have

w +

k∑

i=1

(−αi)ui =

d′

∑

i=k+1

αiui

or
k∑

i=0

βiui =

d′

∑

i=k+1

αiui, (3)
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Figure 6: Possible locations of w with respect to the rays of a 3-dimensional
cone. The figure shows a section of the cones.

with u0 = w, β0 = 1 and βi = −αi > 0 for 1 ≤ i ≤ k. Any two uj and ul on the
same side of the equality are on opposite sides of the linear hull H of the other
uis since there exists a convex combination of uj and ul on this hyperplane. In
particular, since αj and αl have the same sign, we have

αj

αj + αl

uj +
αl

αj + αl

ul ∈ H for αiαl > 0. (4)

The corresponding cones Kj and Kl (with K0 = K) therefore intersect in a
common face F ⊂ H. Let

K ′ := pos
(

{ui }
d
i=1

∪ {w }
)

,

then any x ∈ K ′ lies both in some cone Ki with 0 ≤ i ≤ k and in some cone Ki

with k + 1 ≤ i ≤ d′. (Just subtract an appropriate multiple of Equation (3).)
The cones {Ki }

k
i=0 and {Ki }

d′

i=k+1
therefore both form a triangulation of K ′

and hence

[K ′] = [K] +

k∑

i=1

[Ki] −
∑

j∈J1

[Fj ] =

d′

∑

i=k+1

[Ki] −
∑

j∈J2

[Fj ] (5)

or

[K] =
d′

∑

i=1

εi [Ki] +
∑

j

δj [Fj ] , (6)

with εi = −1 for 1 ≤ i ≤ k, εi = 1 for k + 1 ≤ i ≤ d′, δj ∈ {−1, 1} and Fj some
lower-dimensional faces. Figure 6 shows the possible configurations in the case
of a 3-dimensional cone.

As explained above there are several ways of avoiding the lower-dimensional
faces in (6). Here we will apply the following proposition.
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Proposition 5.3 (Köppe and Verdoolaege (2007)) Let

∑

i∈I1

ǫi[Pi] +
∑

i∈I2

δk[Pi] = 0 (7)

be a (finite) linear identity of indicator functions of closed polyhedra Pi ⊆ Qd,
where the polyhedra Pi with i ∈ I1 are full-dimensional and those with i ∈ I2

lower-dimensional. Let each closed polyhedron be given as

Pi =
{
x | 〈b∗

i,j ,x〉 ≥ βi,j for j ∈ Ji

}
.

Let y ∈ Qd be a vector such that 〈b∗
i,j ,y〉 6= 0 for all i ∈ I1 ∪ I2, j ∈ Ji. For

each i ∈ I1, we define the half-open polyhedron

P̃i =
{

x ∈ Qd | 〈b∗
i,j ,x〉 ≥ βi,j for j ∈ Ji with 〈b∗

i,j ,y〉 > 0,

〈b∗
i,j ,x〉 > βi,j for j ∈ Ji with 〈b∗

i,j ,y〉 < 0
}

.
(8)

Then ∑

i∈I1

ǫi[P̃i] = 0. (9)

When applying this proposition to (6), we obtain

[

K̃
]

=

d′

∑

i=1

εi

[

K̃i

]

, (10)

where we start out from a given K̃, which may be K itself, i.e., a fully closed
cone, or the result of a previous application of the proposition, either through
a triangulation (Section 5.4) or a previous decomposition. In either case, a
suitable y is available, either as an interior point of the cone or as the vector
used in the previous application (which may require a slight perturbation if it
happens to lie on one of the new facets of the cones Ki). We are, however,
free to construct a new y on each application of the proposition. In fact, we
will not even construct such a vector explicitly, but rather apply a set of rules
that is equivalent to a valid choice of y. Below, we will present an “intuitive”
motivation for these rules. For a more algebraic, shorter, and arguably simpler
motivation we refer to Köppe and Verdoolaege (2007).

The vector y has to satisfy 〈b∗
j ,y〉 > 0 for normals b∗

j of closed facets and

〈b∗
j ,y〉 < 0 for normals b∗

j of open facets of K̃. These constraints delineate
a non-empty open cone R from which y should be selected. For some of the
new facets of the cones K̃j , the cone R will not be cut by the affine hull of the

facet. The closedness of these facets is therefore predetermined by K̃. For the
other facets, a choice will have to be made. To be able to make the choice based
on local information and without computing an explicit vector y, we use the
following convention. We first assign an arbitrary total order to the rays. If (the
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affine hull of) a facet separates the two rays not on the facet ui and uj , i.e.,
αiαj > 0 (4), then we choose y to lie on the side of the smallest ray, according to
the chosen order. That is, 〈ñij ,y〉 > 0, for ñij the normal of the facet pointing
towards this smallest ray. Otherwise, i.e., if αiαj < 0, the interior of K will lie
on one side of the facet and then we choose y to lie on the other side. That
is, 〈ñij ,y〉 > 0, for ñij the normal of the facet pointing away from the cone K.
Figure 7 shows some example decompositions with an explicitly marked y.

To see that there is a y satisfying the above constraints, we need to show
that R∩S is non-empty, with S = {y | 〈ñikjk

,y〉 > 0 for all k}. It will be easier
to show this set is non-empty when the ui form an orthogonal basis. Applying a
non-singular linear transformation T does not change the decomposition of w in
terms of the ui (i.e., the αi remain unchanged), nor does this change any of the
scalar products in the constraints that define R∩S (the normals are transformed
by

(
T−1

)T

). Finding a vector y ∈ T (R ∩ S) ensures that T−1(y) ∈ R ∩ S.
Without loss of generality, we can therefore assume for the purpose of showing
that R ∩ S is non-empty that the ui indeed form an orthogonal basis.

In the orthogonal basis, we have b∗
i = ui and the corresponding inward

normal Ni is either ui or −ui. Furthermore, each normal of a facet of S of the
first type is of the form ñikjk

= akuik
− bkujk

, with ak, bk > 0 and ik < jk,
while for the second type each normal is of the form ñikjk

= −akuik
− bkujk

,
with ak, bk > 0. If ñikjk

= akuik
− bkujk

is the normal of a facet of S then
either (Nik

,Njk
) = (uik

,ujk
) or (Nik

,Njk
) = (−uik

,−ujk
). Otherwise, the

facet would not cut R. Similarly, if ñikjk
= −akuik

− bkujk
is the normal of

a facet of S then either (Nik
,Njk

) = (uik
,−ujk

) or (Nik
,Njk

) = (−uik
,ujk

).
Assume now that R ∩ S is empty, then there exist λk, µi ≥ 0 not all zero such
that

∑

k λkñikjk
+

∑

l µiNi = 0. Assume λk > 0 for some facet of the first
type. If Njk

= −ujk
, then −bk can only be canceled by another facet k′ of the

first type with jk = ik′ , but then also Njk′
= −ujk′

. Since the jk are strictly
increasing, this sequence has to stop with a strictly positive coefficient for the
largest ujk

in this sequence. If, on the other hand, Nik
= uik

, then ak can only
be canceled by the normal of a facet k′ of the second kind with ik = jk′ , but
then Nik′

= −uik′
and we return to the first case. Finally, if λk > 0 only for

normals of facets of the second type, then either Nik
= −uik

or Njk
= −ujk

and so the coefficient of one of these basis vectors will be strictly negative. That
is, the sum of the normals will never be zero and the set R ∩ S is non-empty.

For each ray uj of cone Ki, i.e., the cone with ui replaced by w, we now
need to determine whether the facet not containing this ray is closed or not.
We denote the (inward) normal of this cone by nij . Note that cone Kj (if it
appears in (5), i.e., αj 6= 0) has the same facet opposite ui and its normal nji

will be equal to either nij or −nij , depending on whether we are dealing with an
“external” facet, i.e., a facet of K ′, or an “internal” facet. If, on the other hand,
αj = 0, then nij = n0j . If 〈nij ,y〉 > 0, then the facet is closed. Otherwise it is
open. It follows that the two (or more) occurrences of external facets are either
all open or all closed, while for internal facets, exactly one is closed.

First consider the facet not containing u0 = w. If αi > 0, then ui and w are
on the same side of the facet and so ni0 = n0i. Otherwise, ni0 = −ni0. Second,
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Figure 7: Examples of decompositions in primal space.
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Figure 8: Possible locations of w with respect to ui and uj , projected onto a
plane orthogonal to the other rays, when αiαj < 0.
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Figure 9: Possible locations of w with respect to ui and uj , projected onto a
plane orthogonal to the other rays, when αiαj > 0.

if αj = 0, then replacing ui by w does not change the affine hull of the facet
and so nij = n0j . Now consider the case that αiαj < 0, i.e., ui and uj are on
the same side of the hyperplane through the other rays. If we project ui, uj

and w onto a plane orthogonal to the ridge through the other rays, then the
possible locations of w with respect to ui and uj are shown in Figure 8. If both
n0i and n0j are closed then y lies in region 1 and therefore nij (as well as nji)
is closed too. Similarly, if both n0i and n0j are open then so is nij . If only one
of the facets is closed, then, as explained above, we choose nij to be open, i.e.,
we take y to lie in region 3 or 5. Figure 9 shows the possible configurations for
the case that αiαj > 0. If exactly one of n0i and n0j is closed, then y lies in
region 3 or region 5 and therefore nij is closed iff n0j is closed. Otherwise, as
explained above, we choose nij to be closed if i < j.

The algorithm is summarized in Algorithm 1, where we use the convention
that in cone Ki, ui refers to u0 = w. Note that we do not need any of the rays
or normals in this code. The only information we need is the closedness of the
facets in the original cone and the signs of the αi.
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Algorithm 1 Determine whether the facet opposite uj is closed in Ki.

if αj = 0

closed[Ki][uj ] := closed[K̃][uj ]
else if i = j

if αj > 0

closed[Ki][uj ] := closed[K̃][uj ]
else

closed[Ki][uj ] := ¬closed[K̃][uj ]
else if αiαj > 0

if closed[K̃][ui] = closed[K̃][uj ]
closed[Ki][uj ] := i < j

else

closed[Ki][uj ] := closed[K̃][uj ]
else

closed[Ki][uj ] := closed[K̃][ui] and closed[K̃][uj ]

5.4 Triangulation in primal space

As in the case for Barvinok’s decomposition (Section 5.3), we can transform
a triangulation of a (closed) cone into closed simple cones into a triangulation
of half-open simple cones that fully partitions the original cone, i.e., such that
the half-open simple cones do not intersect at their facets. Again, we apply
Proposition 5.3 with y an interior point of the cone (Section 5.1).

5.5 Multivariate quasi-polynomials as lists of polynomials

There are many definitions for a (univariate) quasi-polynomial. Ehrhart (1977)
uses a definition based on periodic numbers.

Definition 5.4 A rational periodic number U(p) is a function Z → Q, such
that there exists a period q such that U(p) = U(p′) whenever p ≡ p′ mod q.

Definition 5.5 A (univariate) quasi-polynomial f of degree d is a function

f(n) = cd(n)nd + · · · + c1(n)n + c0,

where ci(n) are rational periodic numbers. I.e., it is a polynomial expression
of degree d with rational periodic numbers for coefficients. The period of a
quasi-polynomial is the lcm of the periods of its coefficients.

Other authors (e.g., Stanley 1986) use the following definition of a quasi-
polynomial.

Definition 5.6 A function f : Z → Q is a (univariate) quasi-polynomial of
period q if there exists a list of q polynomials gi ∈ Q[T ] for 0 ≤ i < q such that

f(s) = gi(s) if s ≡ i mod q.
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The functions gi are called the constituents.

In our implementation, we use Definition 5.5, but whereas Ehrhart (1977)
uses a list of q rational numbers enclosed in square brackets to represent periodic
numbers, our periodic numbers are polynomial expressions in fractional parts
(Section 1.3). These fractional parts naturally extend to multivariate quasi-
polynomials. The bracketed (“explicit”) periodic numbers can be extended to
multiple variables by nesting them (e.g., Loechner 1999).

Definition 5.6 could be extended in a similar way by having a constituent
for each residue modulo a vector period q. However, as pointed out by Woods
(2006), this may not result in the minimum number of constituents. A vector
period can be considered as a lattice with orthogonal generators and the number
of constituents is equal to the index or determinant of that lattice. By consider-
ing more general lattices, we can potentially reduce the number of constituents.

Definition 5.7 A function f : Zn → Q is a (multivariate) quasi-polynomial of
period L if there exists a list of det L polynomials gi ∈ Q[T1, . . . , Tn] for i in the
fundamental parallelepiped of L such that

f(s) = gi(s) if s ≡ i mod L.

To compute the period lattice from a fractional representation, we compute
the appropriate lattice for each fractional part and then take their intersection.
Recall that the argument of each fractional part is an affine expression in the
parameters (〈a,p〉 + c)/m, with a ∈ Zn and c,m ∈ Z. Such a fractional part
is translation invariant over any (integer) value of p such that 〈a,p〉 + mt =
0, for some t ∈ Z. Solving this homogeneous equation over the integers (in
our implementation, we use PolyLib’s SolveDiophantine) gives the general
solution [

p
t

]

=

[
U1

U2

]

x for x ∈ Zn.

The matrix U1 ∈ Zn×n then has the generators of the required lattice as
columns. The constituents are computed by plugging in each integer point
in the fundamental parallelepiped of the lattice. These points themselves are
computed as explained in Section 5.2. Note that for computing the constituents,
it is sufficient to take any representative of the residue class. For example, we
could take wT = kT W in the notations of Lemma 5.2.

Example 5[Woods (2006)] Consider the parametric polytope

Ps,t = {x | 0 ≤ x ≤ (s + t)/2 }.

The enumerator of Ps,t is
8
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The corresponding output of barvinok enumerate is

s + t >= 0

1 >= 0

Lattice:

[[-1 1]

[-2 0]

]

[0 0]

( 1/2 * s + ( 1/2 * t + 1 )

)

[-1 0]

( 1/2 * s + ( 1/2 * t + 1/2 )

)

5.6 Left inverse of an affine embedding

We often map a polytope onto a lower dimensional space to remove possible
equalities in the polytope. These maps are typically represented by the inverse,
mapping the coordinates x′ of the lower-dimensional space to the coordinates x
of (an affine subspace of) the original space, i.e.,

[
x
1

]

=

[
T v
0T 1

] [
x′

1

]

,

where, as usual in PolyLib, we work with homogeneous coordinates. To obtain
the transformation that maps the coordinates of the original space to the coor-
dinates of the lower dimensional space, we need to compute the left inverse of
the above affine embedding, i.e., an A, b and d such that

d

[
x′

1

]

=

[
A b
0T d

] [
x
1

]

To compute this left inverse, we first compute the (right) Hermite Normal
Form (HNF) of T,

[
U1

U2

]

T =

[
H
0

]

.

The left inverse is then simply
[
dH−1U1 −dH−1v

0T d

]

.

We often also want a decription of the affine subspace that is the range of the
affine embedding and this is given by

[
U2 −U2v
0T 1

] [
x
1

]

= 0.

This computation is implemented in left inverse.
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5.7 Integral basis of the orthogonal complement of a linear

subspace

Let M1 ∈ Zm×n be a basis of a linear subspace. We first extend M1 with zero
rows to obtain a square matrix M ′ and then compute the (left) HNF of M ′,

[
M1

0

]

=

[
H 0
0 0

] [
Q1

Q2

]

.

The rows of Q2 span the orthogonal complement of the given subspace. Since
Q2 can be extended to a unimodular matrix, these rows form an integral basis.

If the entries on the diagonal of H are all 1 then M1 can be extended to
a unimodular matrix, by concatenating M1 and Q2. The resulting matrix is
unimodular, since

[
M1

Q2

]

=

[
H 0
0 In−m,n−m

] [
Q1

Q2

]

.

This method for extending a matrix of which only a few lines are known to a
unimodular matrix is more general than the method described by Bik (1996),
which only considers extending a matrix given by a single row.

5.8 Ensuring a polyhedron has only revlex-positive rays

The barvinok series with options function and all further gen fun manipu-
lations assume that the effective parameter domain has only revlex-positive rays.
When used to computer rational generating functions, the barvinok enumerate

application will therefore transform the effective parameter domain of a problem
if it has revlex-negative rays. It will then not compute the generating function

f(x) =
∑

p∈Zm

#(Pp ∩ Zd)xp,

but
g(z) =

∑

p′∈Zn

#(PTp′+t ∩ Zd)xp′

instead, where p = Tp′+t, with T ∈ Zm×n and t ∈ Zm, is an affine transforma-
tion that maps the transformed parameter space back to the original parameter
space.

First assume that the parameter domain does not contain any lines and
that there are no equalities in the description of Pp that force the values of p
for which Pp contains integer points to lie on a non-standard lattice. Let the
effective parameter domain be given as {p | Ap + c ≥ 0 }, where A ∈ Zs×d of
row rank d; otherwise the effective parameter domain would contain a line. Let
H be the (left) HNF of A, i.e.,

A = HQ,

with H lower-triangular with positive diagonal elements and Q unimodular. Let
Q̃ be the matrix obtained from Q by reversing its rows, and, similarly, H̃ from
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H by reversing the columns. After performing the transformation p′ = Q̃p, i.e.,
p = Q̃−1p′, the transformed parameter domain is given by

{p′ | AQ̃−1p′ + c ≥ 0 }

or
{p′ | H̃p′ + c ≥ 0 }.

The first constraint of this domain is h11p
′
m + c1 ≥ 0. A ray with non-zero

final coordinate therefore has a positive final coordinate. Similarly, the second
constraint is h22p

′
m−1h21p

′
m + c2 ≥ 0. A ray with zero nth coordinate, but

non-zero n − 1st coordinate, will therefore have a positive n − 1st coordinate.
Continuing this reasoning, we see that all rays in the transformed domain are
revlex-positive.

If the parameter domain does contains lines, but is not restricted to a non-
standard lattice, then the number of points in the parametric polytope is invari-
ant over a translation along the lines. It is therefore sufficient to compute the
number of points in the orthogonal complement of the linear subspace spanned
by the lines. That is, we apply a prior transformation that maps a reduced
parameter domain to this subspace,

p = L⊥p′ =
[
L L⊥

]
[
0
I

]

p′,

where L has the lines as columns, and L⊥ an integral basis for the orthogonal
complement (Section 5.7). Note that the inverse transformation

p′ = L−⊥p =
[
0 I

] [
L L⊥

]−1
p

has integral coefficients since L⊥ can be extended to a unimodular matrix.
If the parameter values p for which Pp contains integer points are restricted

to a non-standard lattice, we first replace the parameters by a different set
of parameters that lie on the standard lattice through “parameter compres-
sion”(Meister 2004),

p = Cp′.

The (left) inverse of C can be computes as explained in Section 5.6, giving

p′ = C−Lp.

We have to be careful to only apply this transformation when both the equalities
computed in Section 5.6 are satisfied and some additional divisibility constraints.
In particular if aT /d is a row of C−L, with a ∈ Zn′

and d ∈ Z, the transformation
can only be applied to parameter values p such that d divides 〈a,p〉.

The complete transformation is given by

p = CL⊥Q̂−1p′

or
p′ = Q̂L−⊥C−Lp.
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5.9 Parametric Volume Computation

The volume of a (parametric) polytope can serve as an approximation for the
number of integer points in the polytope. We basically follow the description
of Rabl (2006) here, except that we focus on volume computation for linearly
parametrized polytopes, which we exploit to determine the sign of the determi-
nants we compute, as explained below.

Note first that the vertices of a linearly parametrized polytope are affine
expressions in the parameters that may be valid only in parts (chambers) of
the parameter domain. Since the volume computation is based on the (active)
vertices, we perform the computation in each chamber separately. Also note
that since the vertices are affine expressions, it is easy to check whether they
belong to a facet.

The volume of a d-simplex, i.e., a d-dimensional polytope with d+1 vertices,
is relatively easy to compute. In particular, if vi(p), for 0 ≤ i ≤ d, are the
(parametric) vertices of the simplex P then

vol P =
1

d!

∣
∣
∣
∣
∣
∣
∣
∣
∣

det








v11(p) − v01(p) v12(p) − v02(p) . . . v1d(p) − v0d(p)
v21(p) − v01(p) v22(p) − v02(p) . . . v2d(p) − v0d(p)

...
...

. . .
...

vd1(p) − v01(p) vd2(p) − v02(p) . . . vdd(p) − v0d(p)








∣
∣
∣
∣
∣
∣
∣
∣
∣

.

(11)
If P is not a simplex, i.e., N > d + 1, with N the number of vertices of P ,

then the standard way of computing the volume of P is to first triangulate P ,
i.e., subdivide P into simplices, and then to compute and sum the volumes of
the resulting simplices. One way of computing a triangulation is to compute
the barycenter

1

N

∑

i

vi(p)

of P and to perform a subdivision by computing the convex hulls of the barycen-
ter with each of the facets of P . If a given facet of P is itself a simplex, then
this convex hull is also a simplex. Otherwise the facet is further subdivided.
This recursive process terminates as every 1-dimensional polytope is a simplex.

The triangulation described above is known as the boundary triangula-
tion (Büeler et al. 2000) and is used by Rabl (2006) in his implementation.
The Cohen-Hickey triangulation (Cohen and Hickey 1979; Büeler et al. 2000)
is a much more efficient variation and uses one of the vertices instead of the
barycenter. The facets incident on the vertex do not have to be considered in
this case because the resulting subpolytopes would have zero volume. Another
possibility is to use a “lifting” triangulation (Lee 1991; De Loera 1995). In this
triangulation, each vertex is assigned a (random) “height” in an extra dimen-
sion. The projection of the “lower envelope” of the resulting polytope onto the
original space results in a subdivision, which is a triangulation with very high
probability.

A complication with the lifting triangulation is that the constraint system
of the lifted polytope will in general not be linearly parameterized, even if the
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original polytope is. It is, however, sufficient to perform the triangulation for
a particular value of the parameters inside the chamber since the parametric
polytope has the same combinatorial structure throughout the chamber. The
triangulation obtained for the instantiated vertices can then be carried over to
the corresponding parametric vertices. We only need to be careful to select a
value for the parameters that does not lie on any facet of the chambers. On
these chambers, some of the vertices may coincide. For linearly parametrized
polytopes, it is easy to find a parameter point in the interior of a chamber, as
explained in Section 5.1. Note that this point need not be integer.

A direct application of the above algorithm, using any of the triangulations,
would yield for each chamber a volume expressed as the sum of the absolute
values of polynomials in the parameters. To remove the absolute value, we plug
in a particular value of the parameters (not necessarily integer) belonging to the
given chamber for which we know that the volume is non-zero. Again, it is suffi-
cient to take any point in the interior of the chamber. The sign of the resulting
value then determines the sign of the whole polynomial since polynomials are
continuous functions and will not change sign without passing through zero.
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6 Publications

6.1 Publications about the Library

This is a list of some reports and publications explaining details of parts of the
barvinok library.

• Analytical computation of Ehrhart polynomials and its applications for
embedded systems (Verdoolaege, Beyls, Bruynooghe, Seghir, and Loech-
ner; 2004b)

• Analytical computation of Ehrhart polynomials and its applications for
embedded systems (Verdoolaege, Beyls, Bruynooghe, Seghir, and Loech-
ner; 2004c)

• Analytical Computation of Ehrhart Polynomials and its Application in
Compile-Time Generated Cache Hints (Seghir, Verdoolaege, Beyls, and
Loechner; 2004)

• Analytical computation of Ehrhart polynomials: Enabling more compiler
analyses and optimizations (Verdoolaege, Seghir, Beyls, Loechner, and
Bruynooghe; 2004d)

• Experiences with enumeration of integer projections of parametric poly-
topes (Verdoolaege, Beyls, Bruynooghe, and Catthoor; 2004a)

• Experiences with enumeration of integer projections of parametric poly-
topes (Verdoolaege, Beyls, Bruynooghe, and Catthoor; 2005)

• Computation and Manipulation of Enumerators of Integer Projections
of Parametric Polytopes (Verdoolaege, Woods, Bruynooghe, and Cools;
2005)

• Incremental Loop Transformations and Enumeration of Parametric Sets
(Verdoolaege; 2005)

• Counting with rational generating functions (Verdoolaege and Woods;
2005)

• Symbolic Polynomial Maximization over Convex Sets and its Applica-
tion to Memory Requirement Estimation (Clauss, Fernández, Gabervet-
sky, and Verdoolaege; 2006)

• Counting integer points in parametric polytopes using Barvinok’s rational
functions (Verdoolaege, Seghir, Beyls, Loechner, and Bruynooghe; 2007b)

• Approximating the Number of Integer Points in Parametric Polytopes by
Polynomials (Meister and Verdoolaege; 2007)

• Bounds on Quasi-Polynomials for Static Program Analysis (Devos, Ver-
doolaege, Van Campenhout, and Stroobandt; 2007)
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• Computing parametric rational generating functions with a primal Barvi-
nok algorithm (Köppe and Verdoolaege; 2007)

6.2 Publications Refering to the Library

This is a list of some reports and publications refering to the barvinok library.

• Theorems of Brion, Lawrence, and Varchenko on rational generating func-
tions for cones (Beck, Haase, and Sottile; 2005)

• Generating Cache Hints for Improved Program Efficiency (Beyls and D’Hollander;
2005)

• An alternative algorithm for counting lattice points in a convex polytope
(Lasserre and Zeron; 2005)

• Volume Calculation and Estimation of Parameterized Integer Polytopes
(Rabl; 2006)

• Improved Derivation of Process Networks (Verdoolaege, Nikolov, and Ste-
fanov; 2006)

• Computing the Ehrhart quasi-polynomial of a rational simplex (Barvinok;
2006)

• On Ehrhart Polynomials and Probability Calculations in Voting Theory
(Lepelley, Louichi, and Smaoui; 2006)

• Memory Optimization by Counting Points in Integer Transformations of
Parametric Polytopes (Seghir and Loechner; 2006)

• GRAPHITE: Polyhedral Analyses and Optimizations for GCC (Pop, Sil-
ber, Cohen, Bastoul, Girbal, and Vasilache; 2006)

• Volume Computation for Polytopes and Partition Functions for Classical
Root Systems. (Baldoni-Silva, Beck, Cochet, and Vergne; 2006)

• A primal Barvinok algorithm based on irrational decompositions (Köppe;
2007)

• pn: A Tool for Improved Derivation of Process Networks (Verdoolaege,
Nikolov, and Stefanov; 2007a)
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tifiques de l’École Normale Supérieure. Quatrième Série 21 (4), 653–663.

[31]
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D. thesis, ICPS, Université Louis Pasteur de Strasbourg, France. [13, 41]

Meister, B. and S. Verdoolaege (2007). Approximating the number of integer
points in parametric polytopes by polynomials. manuscript in preparation.

[44]

Pop, S., G.-A. Silber, A. Cohen, C. Bastoul, S. Girbal, and N. Vasilache
(2006). GRAPHITE: Polyhedral analyses and optimizations for GCC.
Technical Report A/378/CRI, Centre de Recherche en Informatique, École
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Büeler, B., 42, 46
Baldoni-Silva, M. W., 45, 46
barvinok, 1, 3, 7, 9, 15, 20, 26, 27, 44,

45
availability, 20

Barvinok’s decomposition, 31
Barvinok, A. I., 29, 31, 45, 46
barvinok count, 1, 14, 20, 25
barvinok count with options, 14
barvinok ehrhart, 1, 25
barvinok enumerate, 1, 14, 21, 25, 39,

40
barvinok enumerate e, 1, 14, 23, 24
barvinok enumerate ev, 14
barvinok enumerate pip, 14, 24
barvinok enumerate scarf, 15
barvinok enumerate scarf series, 15
barvinok enumerate with options, 14
barvinok options, 5, 6, 14

barvinok options new with defaults,
6, 7

barvinok series, 15
barvinok series with options, 15, 40
barvinok union, 1, 25
barycenter, 29, 42
basis

reduced, see reduced basis
Bastoul, C., 45, 48
Beck, M., 45, 46
bernstein, 1, 17
Bernstein coefficient, 17, 19, 28
bernstein::piecewise lst, 19
bernstein optimize, 19
bernsteinExpansion, 17
Beyls, K., 44, 45, 46, 49, 50
big parameter, 25
Bik, A. J. C., 40, 46
bmax, 28
Brion’s polarization trick, 31
Brion, M., 31, 46
Bruynooghe, M., 44, 49, 50
BV BERNSTEIN MAX, 19
BV BERNSTEIN MIN, 19
BV BERNSTEIN NONE, 19

card, 28
Catthoor, F., 44, 49, 50
characteristic cone, 29
Chernikova, 7
Clauss, P., 3, 44, 46, 48
Cochet, C., 45, 46
coeff, 11, 12
Cohen, A., 45, 48
Cohen, J., 42, 46
common refinement, 18
compressed parameter, 13
compute evalue, 10
compute poly, 10
cone

simple, see simple cone
configure, 7
constituent, 38

51



Constraint, 3, 20
constructParameterVector, 17
constructVariableVector, 17
context, 13
convex hull, 17
Cook, W., 16, 46
Cools, R., 44, 50
count lexsmaller, 28
cutting plane, 25

d, 4, 11
D’Hollander, E., 45, 46
De Loera, J. A., 20, 29, 31, 42, 46, 47
Deprettere, E., 49
Devos, H., 44, 47
Dimension, 3
DomainConstraintSimplify, 16
DomainIncludes, 16
DomainSimplify, 18
domainVertices, 17
double description, 7
dual space, 31

eadd, 9
eequal, 10
Ehrhart quasi-polynomial, 25
Ehrhart series, 25
Ehrhart, E., 37, 38, 47
emul, 9
Enge, A., 46
enode, 3–5, 8–10
Enumeration, 4, 9, 14
eor, 10
esum, 10
evalue, 3, 4, 9–11, 14, 19
evalue bernstein coefficients, 17,

19
evalue eval, 10
evalue frac2floor, 7, 10
example, 25
explicit representation, 29

facet
open, see open facet

Feautrier, P., 25, 25, 47
Fernández, F. J., 44, 46

flooring, 7, 8, 10, 11, 23–25
fractional, 7–11, 23–25
Fukuda, K., 46
fundamental parallelepiped, 29

Gabervetsky, D., 44, 46
Gawrilow, E., 26, 47
gen fun, 12, 13, 40
gen fun::add, 13
gen fun::coefficient, 13
gen fun::Hadamard product, 13
gen fun::operator evalue *, 13
gen fun::substitute, 13
generalized reduced basis, 16
GiNaC, 17
GiNaC::ex, 17
GiNaC::exvector, 17
GiNaC::lst, 18
GiNaC::matrix, 17
Girbal, S., 45, 48
GLPK, 16
GMP, 3
Gomory, R. E., 25, 47

h∗-vector, 26
H STAR VECTOR, 26
h star vector, 26
Haase, C., 45, 46
Hadamard product, 13
Haws, D., 46
Hemmecke, R., 46, 47
Hermite Normal Form (HNF), 39, 40
Hickey, T., 42, 46
Huggins, P., 46

incremental specialization, 7
index, 50
inner point, 29
input format

constraints, 20
vertices, 20

integer point, 16

Joswig, M., 26, 47
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