
A Systematic Approach to
Exploring Embedded System Architectures

at Multiple Abstraction Levels
Andy D. Pimentel, Member, IEEE Computer Society,

Cagkan Erbas, Student Member, IEEE, and Simon Polstra

Abstract—The sheer complexity of today’s embedded systems forces designers to start with modeling and simulating system

components and their interactions in the very early design stages. It is therefore imperative to have good tools for exploring a wide

range of design choices, especially during the early design stages, where the design space is at its largest. This paper presents an

overview of the Sesame framework, which provides high-level modeling and simulation methods and tools for system-level

performance evaluation and exploration of heterogeneous embedded systems. More specifically, we describe Sesame’s modeling

methodology and trajectory. It takes a designer systematically along the path from selecting candidate architectures, using analytical

modeling and multiobjective optimization, to simulating these candidate architectures with our system-level simulation environment.

This simulation environment subsequently allows for architectural exploration at different levels of abstraction while maintaining high-

level and architecture-independent application specifications. We illustrate all these aspects using a case study in which we traverse

Sesame’s exploration trajectory for a Motion-JPEG encoder application.

Index Terms—Modeling of computer architecture, real-time and embedded systems, simulation, modeling techniques, performance

analysis and design aids.

�

1 INTRODUCTION

ADVANCES in chip technology according to Moore’s Law,
allowing more and more functionality to be integrated

on a single chip, have led to the emergence of Systems on
Chip (SoCs). These SoCs are nowadays key to the develop-
ment of advanced embedded computing systems, such as
set-top boxes, digital televisions, and 3G cell phones.
Designers of these SoC-based embedded systems are
typically faced with conflicting design requirements regard-
ing performance, flexibility, power consumption, and cost.
As a result, SoC-based embedded systems often have a
heterogeneous system architecture, consisting of components
that range from fully programmable processor cores to fully
dedicated hardware blocks. Programmable processor tech-
nology is used for realizing flexibility, for example, to
support multiple applications and future extensions, while
dedicated hardware is used to optimize designs in time-
critical areas and for power and cost minimization.

The heterogeneity of modern embedded systems and the

varying demands of their target applications greatly compli-

cate the system design. It is widely agreed upon that

traditional design methods fall short for the design of these

systems as such methods cannot deal with the systems’

complexity and flexibility. This has led to the notion of system-

level design, in which aspects such as platform architectures,

separation of concerns, and high-level modeling and simulation

play an important role. Platform-based design [1], [2] stresses

the reuse of IP (Intellectual Property) blocks. In this design
approach, a single hardware platform is used as a “hardware

denominator” that is shared across multiple applications in a

given domain and is accompanied by a range of methods and

tools for design and development. This increases production
volume and reduces cost compared to customizing a chip for

every application.
To even further improve the potentials for reuse of IP

and to allow for effective exploration of alternative design

solutions, it is also widely recognized that “separation of
concerns” [3] is a crucial component in system-level design.

Two common types of separation in the design process are:

1) separating computation from communication by con-

necting IP processing cores via a standard network interface
and 2) separating application (what is the system supposed

to do) from architecture (how it does it).
Moreover, system-level design methodologies typically

urge designers to start with modeling and simulating

(possible) system components and their interactions in the
early design stages [4]. Such system-level models usually

represent application behavior, architecture characteristics,

and the relation (e.g., mapping, hardware-software parti-

tioning) between application(s) and architecture. These
models do so at a high level of abstraction, thereby

minimizing the modeling effort and optimizing simulation

speed that is needed for targeting the early design stages.
This high-level modeling allows for early verification of a

design and can provide estimations on the performance,

power consumption, or cost of the design.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 2, FEBRUARY 2006 99

. The authors are with the Informatics Institute, University of Amsterdam,
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands.
E-mail: {andy, cagkan, spolstra}@science.uva.nl.

Manuscript received 30 Nov. 2004; revised 18 Feb. 2005; accepted 9 May
2005; published online 21 Dec. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TCSI-0385-1104.

0018-9340/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

The above ingredients for system-level design should be
accompanied by a proper methodology for effective and
efficient design space exploration. Due to the systems’ complex-
ity, it is imperative to have good (performance evaluation)
tools for exploring a wide range of design choices, especially
during the early design stages, where the design space is at its
largest. In the context of the Artemis project [4], [5], we are
developing the Sesame1 framework, which provides high-
level modeling and simulation methods and tools for efficient
system-level performance evaluation and exploration of
heterogeneous SoC-based embedded systems targeting the
multimedia application domain. This paper presents an
overview of Sesame. More specifically, we describe Sesame’s
modeling methodology and trajectory, in which the afore-
mentioned principle of separation of concerns [3] is deployed.
Sesame takes a designer systematically along the path from
selecting candidate architectures, using analytical modeling
and multiobjective optimization, to simulating these candi-
date architectures with a system-level simulation environ-
ment. This simulation environment subsequently allows for
architectural exploration at different levels of abstraction (i.e.,
permits gradual refinement of the architecture performance
models) while maintaining high-level and architecture-
independent application specifications. We illustrate all these
aspects using a case study in which we traverse Sesame’s
exploration trajectory for a Motion-JPEG encoder application.

The remainder of the paper is organized as follows: The
next section discusses related work, after which Section 3
describes the ingredients that we believe are important to
efficient system-level design space exploration. Section 4
describes the analytical methods and multiobjective opti-
mization techniques we apply to efficiently select promising
target architectures that can be further studied using
simulation. In Section 5, we subsequently explain how
selected architectures can be modeled and simulated for
performance evaluation using our system-level simulation
framework. Section 6 describes how Sesame facilitates
gradual refinement of system-level architecture models by
applying dataflow graphs. Section 7 illustrates the dis-
cussed aspects of Sesame’s modeling methodology and
trajectory using a case study with a Motion-JPEG encoder
application. Finally, Section 8 concludes the paper.

2 RELATED WORK

There are a number of architectural exploration environ-
ments, such as (Metro)Polis [6], [7], Mescal [8], MESH [9],
Milan [10], and various SystemC-based environments, like
the work of [11], that facilitate flexible system-level
performance evaluation by providing support for mapping
a behavioral application specification to an architecture
specification. For example, in MESH [9], a high-level
simulation technique based on frequency interleaving is
used to map logical events (referring to application
functionality) to physical events (referring to hardware
resources). In [12], an excellent survey is presented of
various methods, tools, and environments for early design
space exploration. In comparison to most related efforts,
Sesame tries to push the separation of modeling application
behavior and modeling architectural constraints at the
system level to even greater extents. As will be explained,

this is achieved by architecture-independent application
models, application-independent architecture models, and
a mapping step that relates these models for trace-driven
cosimulation. Moreover, within Sesame, we use multiple
models of computation, specifically chosen in accordance
with the task to be achieved. For example, we use process
networks for application modeling, dataflow graphs to
facilitate model refinement, and a discrete-event simulator
for fast simulation of our architecture models.

The work of [13] also uses a trace-driven approach, but
this is done to extract communication behavior for studying
on-chip communication architectures. Rather than using the
traces as input to an architecture simulator, their traces are
analyzed statically. In addition, a traditional hardware/
software cosimulation stage is required in order to generate
the traces. Archer [14] shows similarities with the Sesame
framework due to the fact that both Sesame and Archer
stem from the earlier Spade project [15]. A major difference
is, however, that Archer follows a different application-to-
architecture mapping approach. Instead of using event
traces, it maps so-called Symbolic Programs, which are
derived from the application model, onto architecture
model resources. Moreover, unlike Sesame, Archer does
not include support for rapidly pruning the design space.

Ptolemy [16] is an environment for the simulation and
prototyping of heterogeneous systems. It allows for using
multiple models of computation (e.g., discrete event, finite
state machines, CSP [17], dataflow [18], Kahn Process
Networks [19], etc.) within a single system simulation. It
does so by supporting domains to build subsystems, each
conforming to a different model of computation.

In the domain of hardware/software codesign of
embedded systems, multiobjective optimization studies
have been performed extensively for system-level synthesis
(e.g., [20], [21], [22]) and platform configuration (e.g., [23],
[24], [25]). The former refers to the problem of optimally
mapping a task-level specification onto a heterogeneous
hardware/software architecture, while the latter includes
tuning the platform architecture parameters and exploring
its configuration space. In the Sesame framework, we also
apply multiobjective optimization methods, although we do
not primarily target the problem of system synthesis.
Rather, our primary objective is to develop a methodology
that allows for evaluating a large architectural design space
and to steer the designer in the exploration process by
providing a number of approximated Pareto-optimal solu-
tions. These solutions are then fed to our simulation
framework for further evaluation. After simulation, sys-
tem-level performance numbers (e.g., utilization of compo-
nents, data throughput, communication contention, etc.) are
provided to the designer which may subsequently be used
for a new exploration iteration. The Milan framework [10]
follows a similar steering approach, but uses symbolic
analysis methods to reduce the design space that needs to
be explored using simulation.

Research on the gradual refinement of (abstract) system-
level architecture performance models is still in its infancy.
There are several attempts being made to address this issue,
such as in the Metropolis [7] and Milan frameworks [10],
the work of [26], and in the context of SystemC (e.g., [11]). In
[26], for example, a methodology is proposed in which
architecture-independent specification models are trans-
formed (i.e., refined) into architecture models to facilitate

100 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 2, FEBRUARY 2006

1. Sesame stands for Simulation of Embedded System Architectures for
Multilevel Exploration.

architectural exploration. Although promising, these efforts
generally do not offer a clear methodology accompanied with
tool-support that allows a designer to gradually refine high-
level architecture performance models, while retaining the
separation between application and architecture as much as
possible to allow effective exploration. In addition to this, the
majority of the work in this field has focused on communica-
tion refinement only. For example, in [27], [28], [29], [30], [31],
various mechanisms are proposed for the refinement of
application-level communication primitives into more de-
tailed implementation (architecture) primitives.

3 TOWARD EFFICIENT SYSTEM-LEVEL DESIGN

SPACE EXPLORATION

Nowadays, it is widely recognized that the separation-of-
concerns concept [3] is key to achieving efficient system-
level design space exploration of complex embedded
systems. In this respect, we advocate the use of the
increasingly popular Y-chart design methodology [6], [32],
[33] as a basis for (early) design space exploration. This
implies that, in Sesame, we separate application models and
architecture (performance) models while also recognizing an
explicit mapping step to map application tasks onto
architecture resources. This is illustrated in Fig. 1. In this
approach, an application model—derived from a specific
application domain—describes the functional behavior of
an application in a timing and architecture independent
manner. A (platform) architecture model—which has been
defined with the application domain in mind—defines
architecture resources and captures their performance
constraints. To perform quantitative performance analysis,
application models are first mapped onto and then
cosimulated with the architecture model under investiga-
tion, after which the performance of each application-
architecture combination can be evaluated. Subsequently,
the resulting performance numbers may inspire the
designer to improve the architecture, restructure/adapt
the application(s), or modify the mapping of the applica-
tion(s). These designer actions are illustrated by the light
bulbs in Fig. 1.

Essential in this methodology is that an application model
is independent of architectural specifics, assumptions on

hardware/software partitioning, and timing characteris-
tics. As a result, application models can be reused in the
exploration cycle. For example, and as will be demon-
strated in this paper, a single application model can be
used to exercise different hardware/software partitionings
and can be mapped onto a range of architecture models,
possibly representing different architecture designs or
modeling the same architecture design at various levels
of abstraction. With the latter, we refer to the gradual
refinement of architecture performance models. As design
decisions are made, a designer typically wants to descend in
abstraction level by disclosing more and more implementa-
tion details in an architecture performance model. Even-
tually, such refinements should bring an initially abstract
architecture model closer to the level of detail where it is
possible to synthesize an implementation.

Although such system-level modeling and simulation
allows for efficiently evaluating different application/
architecture combinations, it would fail to explore large
parts—let alone the entire span—of the design space. This is
because system-level simulation is simply too slow for
comprehensively exploring the design space, which is at its
largest during the early stages of design. For this reason, it
is of the utmost importance that effective steering be
provided to the system-level simulation which is capable
of guiding the designer toward promising system architec-
tures and which therefore allows for pruning the design
space. To quickly find promising candidate application-to-
architecture mappings in Sesame and thereby reducing the
points in the design space that need to be explored with
system-level simulation, we have developed an analytical
model that captures several trade-offs faced during the
process of mapping.

4 ANALYTICAL FORMULATION OF THE MAPPING

PROBLEM

As already mentioned in Section 3, Sesame supports
separate application and architecture models within its
exploration framework. This separation implies an explicit
mapping step for cosimulation of the two models. Since the
enumeration of all possible mappings grows exponentially,
a designer usually needs a subset of best candidate
mappings for further evaluation in terms of cosimulation.
Therefore, in summary, the mapping problem in Sesame is
the optimal mapping of an application model onto a
(platform) architecture model. This problem formulation
could, for example, take three objectives into account [34]:
maximum processing time in the system, total power
consumption of the system, and the cost of the architecture.
This section describes how we formulate the mapping
problem as a multiobjective optimization problem in such a
way as to quickly search for promising candidate system
architectures with respect to the above three objectives.

Application Modeling. The application models in Sesame
are process networks which can be represented by a graph
AP ¼ ðVK;EKÞ, where the sets VK and EK refer to the nodes
(i.e., processes) and the directed channels between these
nodes, respectively. For each node in the application model, a
computation requirement (workload imposed by the node
onto a particular component in the architecture model) and
an allele set (the processors that it can be mapped onto) are
defined. For each channel in the application model, a

PIMENTEL ET AL.: A SYSTEMATIC APPROACH TO EXPLORING EMBEDDED SYSTEM ARCHITECTURES AT MULTIPLE ABSTRACTION... 101

Fig. 1. Y-chart-based design space exploration [6], [32], [33].

communication requirement is defined only if that channel is
mapped onto an external memory element. Hence, we neglect
internal communications (within the same processor) and
only consider external (interprocessor) communications.

Architecture Modeling. The architecture models in Sesame
can also be represented by a graph AR ¼ ðVA;EAÞ, where
the sets VA and EA denote the architecture components and
the connections between them, respectively. For each
processor in an architecture model, we define the para-
meters processing capacity, power consumption during
execution, and a fixed cost.

Having defined more abstract mathematical models for
Sesame’s application and architecture model components,
we have the following optimization problem:

Definition 1 (MMPN problem [34]). The Multiprocessor
Mappings of Process Networks (MMPN) problem is:

min fðxÞ ¼ ðf1ðxÞ; f2ðxÞ; f3ðxÞÞ
subject to giðxÞ; i 2 f1; � � � ; ng;x 2 Xf;

where

. f1 is the maximum processing time,

. f2 is the total power consumption, and

. f3 is the total cost of the system.

The functions gi are the constraints and x 2 Xf are the
decision variables. These variables represent decisions like
which processes are mapped onto which processors or
which processors are used in a particular architecture
instance. The constraints of the problem make sure that the
decision variables are valid, i.e., Xf is the feasible set. For
example, all processes need to be mapped onto a processor
from their allele sets or, if two communicating processes are
mapped onto the same processor, the channel(s) between
them must also be mapped onto the same processor and so
on. The optimization goal is to identify a set of solutions
which are superior to all other solutions when all three
objective functions are minimized.

Here, we have provided an overview of the MMPN
problem. The exact mathematical modeling and formula-
tion can be found in [34].

4.1 Multiobjective Optimization

To solve the above multiobjective optimization problem, we
use the (improved) Strength Pareto Evolutionary Algorithm
(SPEA2) [35] that finds a set of approximated Pareto-
optimal mapping solutions, i.e., solutions that are not
dominated in terms of quality (performance, power, and
cost) by any other solution in the feasible set. To this end,
SPEA2 maintains an external set to preserve the nondomi-
nated solutions encountered so far besides the original
population. Each mapping solution is represented by an
individual encoding, i.e., a chromosome in which the genes
encode the values of parameters. SPEA2 uses the concept of
dominance to assign fitness values to individuals. It does so
by taking into account how many individuals a solution
dominates and is dominated by. Distinct fitness assignment
schemes are defined for the population and the external set
to always ensure that better fitness values are assigned to
individuals in the external set. Additionally, SPEA2 per-
forms clustering to limit the number of individuals in the
external set (without losing the boundary solutions) while
also maintaining diversity among them. For selection, it

uses binary tournament with replacement. Finally, only the
external nondominated set takes part in selection. In our
SPEA2 implementation, we have also introduced a repair
mechanism [34] to handle infeasible solutions. The repair
takes place before the individuals enter evaluation to make
sure that only valid individuals are evaluated.

For our mapping problem, an individual encoding
consists of two parts: a part for application nodes and a
part for application channels. Each value (i.e., gene) in the
individual encoding has its own allele set which is
determined by the type of the gene and the constraints of
the problem. For genes representing application nodes, only
the set of processors in the architecture model form the
allele set, while, for genes representing the application
channels, both the sets of processors and memories
constitute the allele set. The constraints of the problem
may include some limitations which should be considered
in the individual encoding. For example, if there exists a
dedicated architecture component for a specific application
process, then only this architecture component has to be
included in the allele set of that application process. In
Fig. 2, an example of an individual encoding is given. The
first three genes are those for application nodes, while the
remaining genes are for application channels. For this
encoding, the second application process is mapped onto
DSP2 and the second application channel is mapped onto
DRAM. We also see that the allele sets for these two genes
are different.

In [34], we have shown that an SPEA implementation to
heuristically solve the multiobjective optimization problem
can provide the designer with good insight on the quality of
candidate system architectures. This knowledge can subse-
quently be used to select an initial (platform) architecture to
start the system-level simulation phase or to guide a
designer in finding alternative architectures when system-
level simulation indicates that the architecture under
investigation does not fulfill the requirements. The latter
is an example of design feedback, as represented by the
light bulbs in Fig. 1.

5 SYSTEM-LEVEL PERFORMANCE MODELING AND

SIMULATION

Sesame’s system-level modeling and simulation environ-
ment [36], [37] builds upon the ground-laying work of the
Spade framework [15]. This means that Sesame facilitates
performance analysis according to the Y-chart design

102 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 2, FEBRUARY 2006

Fig. 2. An example individual encoding.

approach [6], [32], [33] as discussed in Section 3, recogniz-
ing separate application and architecture models. The
layered infrastructure of Sesame’s modeling and simulation
framework is shown in Fig. 3. Sesame maps application
models onto architecture models for cosimulation by means
of trace-driven simulation, while using an intermediate
mapping layer for scheduling and event-refinement pur-
poses. The remainder of this section provides an overview
of each of the layers as shown in Fig. 3.

5.1 Application Modeling

For application modeling, Sesame uses the Kahn Process
Network (KPN) model of computation [19] in which
parallel processes communicate with each other via
unbounded FIFO channels. In the Kahn paradigm, reading
from channels is done in a blocking manner, while writing
is nonblocking. We use KPNs for application modeling
because they nicely fit with the targeted media-processing
application domain and they are deterministic. The latter
implies that the same application input always results in the
same application output, irrespective of the scheduling of
the KPN processes. This provides us with a lot of
scheduling freedom when mapping KPN processes onto
architecture models for quantitative performance analysis.
However, because KPN semantics disallow, for example,
the modeling of interrupts, our ability to model applications
with time-dependent behavior is currently limited.

The Kahn application models used in Sesame are either
generated by a framework called Compaan [38], [39] or are
derived by hand from sequential C/C++ code. The
Compaan framework allows for automatically converting
a sequential imperative application specification—more
specifically, an application written in a subset of Matlab—
into a KPN. The workload of an application is captured by
(partly manually) instrumenting the code of each Kahn
process with annotations that describe the application’s
computational and communication actions. By executing
the Kahn model, these annotations cause the Kahn
processes to generate traces of application events which

subsequently drive the underlying architecture model.
There are three types of application events: the commu-
nication events read and write and the computational event
execute. These application events typically are coarse
grained, such as execute(DCT) or read(channel_id,pixel-block).

To execute Kahn application models and thereby
generate the application events that represent the workload
imposed on the architecture, Sesame features a process
network execution engine supporting Kahn semantics. This
execution engine runs the Kahn processes, which are
written in C++, as separate threads using the Pthreads
package. To allow for rapid creation and modification of
models, the structure of the application models (i.e., which
processes are used in the model and how they are
connected to each other) is not hard-coded in the C++
implementation of the processes. Instead, it is described in a
language called YML (Y-chart Modeling Language) [37].
This is an XML-based language which is similar to
Ptolemy’s MoML [40], but is slightly less generic in the
sense that YML only needs to support a few simulation
domains. As a consequence, YML supports a subset of
MoML’s features. However, YML provides one additional
feature in comparison to MoML as it contains built-in
scripting support. This allows for loop-like constructs,
mapping, and connectivity functions, and so on, which
facilitate the description of large and complex models. In
addition, it enables the creation of libraries of parameter-
ized YML component descriptions that can be instantiated
with the appropriate parameters, thereby fostering reuse of
component descriptions. To simplify the use of YML even
further, a YML editor has also been developed to compose
model descriptions using a GUI.

5.2 Architecture Modeling

Architecture models in Sesame, which typically operate at
the so-called transaction level [41], [42], simulate the
performance consequences of the computation and com-
munication events generated by an application model.
These architecture models solely account for architectural
performance constraints and do not need to model
functional behavior. This is possible because the functional
behavior is already captured in the application models,
which subsequently drive the architecture simulation. An
architecture model is constructed from generic building
blocks provided by a library, which contains template
performance models for processing cores, communication
media (like buses), and various types of memory. The
structure of architecture models—specifying which build-
ing blocks are used from the library and the way they are
connected—is also described in YML.

Sesame’s architecture models are implemented using
either Pearl [43] or SystemC [42]. Pearl is a small but
powerful discrete-event simulation language which pro-
vides easy construction of the models and fast simulation
[36]. For our SystemC architecture models, we provide an
add-on library to SystemC, called SCPEx (SystemC Pearl
Extension) [44], which extends SystemC’s programming
model with Pearl’s message-passing paradigm and which
provides SystemC with YML support. SCPEx raises the
abstraction level of SystemC models, thereby reducing the
modeling effort required for developing transaction-level
architecture models and making the modeling process less
prone to programming errors.

PIMENTEL ET AL.: A SYSTEMATIC APPROACH TO EXPLORING EMBEDDED SYSTEM ARCHITECTURES AT MULTIPLE ABSTRACTION... 103

Fig. 3. Sesame’s application model layer, architecture model layer, and

mapping layer which interfaces between application and architecture

models.

5.3 Mapping

To map Kahn processes (i.e., their event traces) from an
application model onto architecture model components and
to support the scheduling of application events when
multiple Kahn processes are mapped onto a single
architecture component (e.g., a programmable processor),
Sesame provides an intermediate mapping layer. This layer
consists of virtual processor components and FIFO buffers
for communication between the virtual processors. There is
a one-to-one relationship between the Kahn processes in the
application model and the virtual processors in the
mapping layer. This is also true for the Kahn channels
and the FIFO buffers in the mapping layer, except for the
fact that the latter are limited in size. Their size is
parameterized and dependent on the modeled architecture.
As the structure of the mapping layer is equivalent to the
structure of the application model under investigation,
Sesame provides a tool that is able to automatically generate
the mapping layer from the YML description of an
application model.

A virtual processor in the mapping layer reads in an
application trace from a Kahn process via a trace event
queue and dispatches the events to a processing component
in the architecture model. The mapping of a virtual
processor onto a processing component in the architecture
model is freely adjustable, facilitated by the fact that the
mapping layer and its mapping onto the architecture model
are described in YML. Communication channels—i.e., the
buffers in the mapping layer—are also mapped onto the
architecture model. In Fig. 3, for example, one buffer is
placed in shared memory,2 while the other buffer is
mapped onto a point-to-point FIFO channel between
processors 1 and 2.

The mechanism used to dispatch application events from
a virtual processor to an architecture model component
guarantees deadlock-free scheduling of the application
events from different event traces [36]. In this mechanism,
computation events are always directly dispatched by a
virtual processor to the architecture component onto which
it is mapped. The latter schedules incoming events that
originate from different event queues according to a given
policy (FCFS, round-robin, or customized) and subse-
quently models their timing consequences. Communication
events, however, are not directly dispatched to the under-
lying architecture model. Instead, a virtual processor that
receives a communication event first consults the appro-
priate buffer at the mapping layer to check whether or not
the communication is safe to take place so that no deadlock
can occur. Only if it is found to be safe (i.e., for read events,
the data should be available and, for write events, there
should be room in the target buffer) communication events
may be dispatched. As long as a communication event
cannot be dispatched, the virtual processor blocks. This is
possible because the mapping layer executes in the same
simulation as the architecture model. Therefore, both the
mapping layer and the architecture model share the same
simulation-time domain. This also implies that, each time a
virtual processor dispatches an application event (either
computation or communication) to an architecture model

component, the virtual processor is blocked in simulated
time until the event’s latency has been simulated by the
architecture model. In other words, virtual processors can
be seen as abstract representations of application processes
at the system architecture level.

When architecture model components are gradually
refined to disclose more implementation details, Sesame
follows an approach in which the virtual processors at the
mapping layer are also refined. The latter is done by
incorporating dataflow graphs in virtual processors such
that it allows us to perform architectural simulation at
multiple levels of abstraction without modifying the
application model. Fig. 3 illustrates this dataflow-based
refinement by refining the virtual processor for process B
with a fictive dataflow graph. In this approach, the
application event traces specify what a virtual processor
executes and with whom it communicates, while the internal
dataflow graph of a virtual processor specifies how the
computations and communications take place at the
architecture level. In the next section, we provide more
insight on how this refinement approach works by
explaining the relation between trace transformations for
refinement and dataflow actors at the mapping layer.

6 ARCHITECTURE MODEL REFINEMENT THROUGH

TRACE TRANSFORMATIONS

Refining architecture model components in our system-
level simulation framework requires that the application
events driving these components should also be refined to
match the architectural detail. Since we aim at a smooth
transition between different abstraction levels, reimple-
menting or transforming (parts of) the application models
for each abstraction level is undesirable. Instead, Sesame
maintains only application models at a high level of
abstraction (thereby optimizing the potentials for reuse of
application models) and bridges the abstraction gap
between application models and underlying architecture
models at the mapping layer. As will be explained in this
section, bridging this abstraction gap is accomplished by
refining the virtual processors in the mapping layer with
dataflow actors that transform coarse-grained application
events into finer grained events at the desired abstraction
level which subsequently drive the architecture model
components [45], [46], [47]. In other words, the dataflow
graph inside a virtual processor consumes external input
(dataflow) tokens that represent high-level computational
and communication application events and produces
external output tokens that represent the refined architec-
tural events associated with the application events.

Refinement of application events is denoted using trace
transformations [28] in which the left-hand side contains the
coarse-grained application events that need to be refined
and the right-hand side the resulting architecture-level
events. Furthermore, “! ” symbols in trace transformations
denote the “followed by” ordering relation. To give an
example, the following trace transformations refine R(ead)
and W(rite) application events such that the synchroniza-
tions are separated from actual data transfers [28]:

R ¼)
�ref

cd! ld! sr; ð1Þ

104 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 2, FEBRUARY 2006

2. The architecture model accounts for the modeling of bus activity
(arbitration, transfers, etc.) when accessing this buffer.

W ¼)
�ref

cr! st! sd: ð2Þ

Here, refined architecture-level events check-data�, load-
datay, signal-room�, check-room�, store-datay, and signal-data�

are abbreviated as cd, ld, sr, cr, st, and sd, respectively. The
events marked with * refer to synchronizations while those
marked with y refer to data transmissions. We further
assume that the cd and cr events are blocking, i.e., block
until, respectively, data or room is available in a buffer. The
above refinements allow, for example, for moving synchro-
nization points or reducing their number when a pattern of
application events is transformed [28], [45]. Consider, for
example, an application process that reads a block of data
from an input buffer, performs some computation on it, and
writes the results to an output buffer. This would generate
an “R! E !W” application-event pattern, in which the
E(xecute) refers to the computation on the block of data.
Assuming that this application process is mapped onto a
processing component that does not have local storage but
operates directly on its input and output buffers, we need
the following trace transformation:

R! E !W ¼)
�ref

cd! cr! ld! E ! st! sr! sd: ð3Þ

In the refined event sequence, we check early—using the
check-room (cr)—to see if there is room in the output buffer
before fetching the data (ld) from the input buffer because the
processing component cannot temporarily store results
locally. In addition, the input buffer must remain available
until the processing component has finished operating on it
(i.e., after writing the results to the output buffer). Therefore,
the signal-room (sr) is scheduled after the st. Note that this
behavior could not have been modeled at the level of the
coarse-grained, atomic R(ead) and W(rite) application events.

6.1 Event Refinement Using Dataflow Graphs

In Sesame, Synchronous Data Flow (SDF) [48] and Integer-
controlled Data Flow (IDF) [49] actors are deployed to
realize trace transformations. As we will explain in this
section, the SDF actors perform the actual event refinement
while dynamic IDF actors are utilized to model repetitions
and branching conditions that are present in the application
code [46]. In addition, as illustrated in [45], IDF actors may
also be used to achieve less complicated (in terms of the
number of actors and channels) dataflow graphs.

Refining application event traces by means of dataflow
actors works as follows: For each Kahn process in the
application model, an IDF graph is synthesized at the
mapping layer and embedded in the corresponding virtual
processor. As a result, each virtual processor is equipped
with an abstract representation of the application code from
its corresponding Kahn process, similar to the concept of
Symbolic Programs from [14]. Sesame’s IDF graphs consist
of static SDF actors (due to the fact that SDF is a subset of
IDF) embodying the architecture events that are the—
possibly transformed—representation of application events
at the architecture level. In addition, to capture the control
behavior of the Kahn processes, the IDF graphs also contain
dynamic actors for conditional jumps and repetitions. The
IDF graphs are executable as the actors have an execution
mechanism called firing rules which specify when an actor
can fire. When firing an actor, it consumes the required

tokens from its input token channels and produces a
specified number of tokens on its output channels.

To illustrate how SDF actors can be used to transform (i.e.,
refine) application events, consider the following example in
which two Kahn application processes act as a producer-
consumer pair communicating pixel blocks: Let us assume
that the producing Kahn process is mapped onto an
architectural processing element (e.g., IP core) that produces
lines rather than blocks and where four lines equal one block.
Fig. 4a shows the SDF graphs inside virtual processors X and
Y that represent the behavior of, respectively, the producer
and consumer application processes at the architecture level.
The SDF actors inside virtual processor X refine the W(rite)
application events—that operate at block level—from the
producing Kahn process according to the following
transformation:

W ¼)
�ref

cr! stðlÞ ! stðlÞ ! stðlÞ ! stðlÞ ! sd; ð4Þ

where stðlÞ refers to a “store line.” Since the consuming
processing element reads entire pixel blocks (ldðBÞ in Fig. 4a),
synchronization is handled at block level, i.e., cr and cd events
check for the availability of (room for) entire blocks.

The names of the actors in Fig. 4a represent their
functionality. Some actors are depicted by boxes rather than
circles to indicate that they are, as will be explained further on,
compound actors. If no explicit number is specified at a
channel of an actor, then it is assumed that a single token on
that particular channel is consumed/produced. Focusing on
the SDF graph in virtual processor X in Fig. 4a, the cr actor
fires when it receives a W(rite) application event and has at
least one token on its channel from the sr actor of virtual
processor Y. Here, the } symbol denotes the delay of the
channel, specifying the initial number of tokens that are
present on the channel. This means that a delay of b tokens on
the channel to the cr actor in virtual processor X models a
FIFO buffer of b elements between virtual processors X and Y.
Firing the cr actor produces four tokens for the stðlÞ actor
which subsequently fires four times in a row, where each
firing produces a single token. Finally, the sd actor consumes
four tokens to fire, after which it produces a token for the
cd actor in virtual processor Y to signal the availability of a
new pixel block.

PIMENTEL ET AL.: A SYSTEMATIC APPROACH TO EXPLORING EMBEDDED SYSTEM ARCHITECTURES AT MULTIPLE ABSTRACTION... 105

Fig. 4. (a) Refining blocks to lines. (b) Decomposition of the st actor.

A special characteristic of our SDF actors is that they can
be coupled (i.e., mapped) to architecture model compo-
nents. This means that a firing SDF actor may send a token
to the architecture model to initiate the simulation of an
event. The SDF actor in question is then blocked until it
receives an acknowledgment token from the architecture
model indicating that the performance consequences of the
event have been simulated. In the example of Fig. 4a, the st
and ld actors are mapped onto the architecture model
(indicated by the boxed representation of the actors). For
these mapped actors, we use special compound actors.
Taking the st compound actor of virtual processor X as an
example, its composition is shown in Fig. 4b. It is composed
of an st-init and st-exit actor. Firing the st-init actor produces
a token for the architecture model indicating that the
performance consequences of the st event need to be
simulated. When this has been done, the architecture model
sends an acknowledgment token to the st-exit actor,
triggering it to fire and thereby finalizing the firing of the
entire compound actor. Because the virtual processors with
their dataflow graphs and the underlying architecture
model are executed within the same simulation (and, thus,
are sharing the virtual clock), the token exchange with the
architecture model yields timed dataflow graphs. For
example, the time delay of the ld and st actors in Fig. 4a
depends on the simulation of these events in the underlying
architecture model. Here, we would like to add that
synchronization events can also be modeled using the
compound actor of Fig. 4b in order to model a latency that is
associated with executing synchronization operations.

6.2 IDF Graphs for Event Trace Transformations

As mentioned before, we apply dynamic IDF actors (in
addition to SDF actors) to capture dynamic behavior in our
architecture-level dataflow representation of application
behavior. To illustrate how these IDF graphs are con-
structed and applied for event trace transformation, we use
an example taken from a Motion-JPEG encoder application
that we studied in [36]. Fig. 5 shows an annotated C++ code
fragment from the Quality-Control (QC) Kahn process of the
Motion-JPEG application. The QC process dynamically
computes the tables for Huffman encoding as well as those
required for quantizing each frame in the video stream,
according to the image statistics and the obtained compres-
sion bitrate of the previous video frame. In Fig. 6, an IDF
graph for the QC process is given, realizing a high-level
(unrefined) simulation. That is, the architecture-level events
embodied by the SDF actors directly represent the applica-
tion-level R(ead), E(xecute), and W(rite) events. The SDF
actors drive the architecture model components using the
aforementioned token exchange mechanism, although Fig. 6
does not depict the architecture model nor the token
exchange channels for the sake of simplicity. Also not
shown are the token channels to and from the IDF graphs of
neighboring virtual processors with which is communi-
cated. For example, the R(ead) actors are, in reality,
connected to a W(rite) actor from a remote virtual processor
in order to signal when data or room is available. The
(horizontal) dotted token channels between the SDF actors
in Fig. 6 denote dependencies. Adding these token channels
to the graph results in sequential execution of architecture-
level events, while removing them will allow for exploiting
parallelism by the underlying architecture model. The IDF

actors CASE-BEGIN, CASE-END, REPEAT-BEGIN, and
REPEAT-END model conditional and repetition structures
that are present in the application code. Like all models in
Sesame, the structure of our IDF graphs is also described
using YML.

In the IDF graphs, scheduling information of actors is not
incorporated into the graph definition, but is explicitly
supplied by a scheduler. As can be seen in Fig. 6, this
scheduler operates on the original application event trace in
order to schedule the IDF actors by producing the
appropriate control tokens. The actor scheduling is typically
done in a dynamic manner. This means that the application
and architecture models are cosimulated using a UNIX IPC-
based interface to communicate events from the application
model to the scheduler, implying that the scheduler only
operates on a window of application events. For a more
detailed discussion on the scheduling of our IDF actors, we
refer the interested reader to [5].

Fig. 7 shows an IDF graph for the QC process that
implements the aforementioned communication refinement
in which the application-level R(ead) and W(rite) events are
refined such that the synchronization and data-transfer
parts become explicit. The computational E(xecute) events
remain unrefined in this example. We again omitted the
token channels to/from IDF graphs of neighboring virtual
processors in Fig. 7, but, in reality, cd actors have, for
example, an incoming token channel from an sd actor of a
remote IDF graph (as illustrated in Fig. 4). By firing the
refined SDF actors (cd, cr, etc.) in the IDF graph according to
the order in which they appear on the right-hand side of a
trace transformation—see, for example, transformation (3),
noting that the right-hand side may also be specified as a

106 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 2, FEBRUARY 2006

Fig. 5. An annotated C++ code fragment taken from a Quality-Control

(QC) task in a Motion-JPEG encoder application.

partial ordering [28], [47]—this automatically yields a valid
schedule for the IDF graph [46]. Here, we also recall that the
level of parallelism of the architecture-level events is
specified by the presence or absence of token channels
between SDF actors. To conclude, communication refinement
is accomplished by simply replacing SDF actors with refined
ones, allowing for evaluating the performance of different
communication behaviors at the architecture level while the
application model remains unaffected. As shown in [47] and
as we will demonstrate in the next section, this approach
allows for refining computational behavior as well.

The IDF-based refinement approach also permits mixed-
level simulations in which only parts of the architecture
model are refined while the other parts remain at the higher
level of abstraction. This will be demonstrated in the next
section, too. These mixed-level simulations enable a more
detailed performance evaluation of a specific architecture
component in a system-level context. They therefore avoid
the need for building a completely refined architecture
model during the early design stages. Moreover, mixed-
level simulations do not suffer from deteriorated system
evaluation efficiency caused by unnecessarily refined parts
of the architecture model.

7 A MOTION-JPEG CASE STUDY

In this section, we use the aforementioned Motion-JPEG
(M-JPEG) encoder application to illustrate Sesame’s model-
ing methodology and trajectory. More specifically, we
demonstrate how Sesame allows a designer to system-
atically traverse the path from selecting candidate archi-
tectures, using analytical modeling and multiobjective
optimization, to simulating these candidate architectures
with our system-level simulation environment. Subse-
quently, architectural exploration is performed at different
levels of abstraction (facilitated by Sesame’s gradual
refinement of architecture performance models) while
maintaining high-level and architecture-independent appli-
cation specifications.

The application model of the M-JPEG encoder is shown in
Fig. 8. Our M-JPEG encoder differs from traditional encoders
in two ways: It can operate on video data in both YUV and

RGB formats on a per-frame basis and it includes dynamic
quality control by means of on-the-fly generation of quanti-
zation and Huffman tables. Fig. 9 depicts the studied
(meta)platform architecture, consisting of five processors
and four memories connected by two shared buses and point-
to-point links. Using our analytical modeling and multi-
objective optimization methods, we intend to find promising
instances of this (meta)platform that allow a good mapping
(in terms of performance, power, and cost) of the M-JPEG
application. Two of these candidate platform instances will
then be further studied using system-level simulation.

In Table 1, we provide the processor and memory
characteristics that have been used during the multiobjective
optimization process. In this exploration phase, we used
relative processing capacities (x), power consumption during
execution (y) and communication (z), and cost (k) values for
each processor and memory in the platform. We have
implemented the MMPN problem as a PISA module [50]
and subsequently used the already available SPEA2 optimi-
zer to solve it. The mapping may impose some constraints on,
e.g., which application process can be mapped onto which
processor. Such constraints are specified in the allele sets and
constraint violations are handled by a repair mechanism, as
was explained in Section 4.1. In Table 2, we show the

PIMENTEL ET AL.: A SYSTEMATIC APPROACH TO EXPLORING EMBEDDED SYSTEM ARCHITECTURES AT MULTIPLE ABSTRACTION... 107

Fig. 6. IDF graph representing the QC task from Fig. 5, realizing high-

level (unrefined) simulation at architecture level.

Fig. 7. IDF graph for the QC task realizing communication refinement.

Fig. 8. Application model of the Motion-JPEG encoder.

configuration used in our experiments. Additional SPEA2
parameters are as follows:

. population size = 100,

. number of generations = 1,000,

. mutation probability = 0.5,

. bit mutation probability = 0.01, and

. crossover probability = 0.8.

In Fig. 10, the nondominated front is shown as obtained by
plotting 17 nondominated solutions that were found by
SPEA2 in a single run. Before plotting, the objective function
values were normalized so that they fall into the ½0; 1� interval.
The latter normalization procedure is usually applied for
better visualization as objective functions scale indepen-
dently. This particular search took roughly 5 seconds on a
2.8GHz Pentium-4 machine, but search times can be
dependent on factors such as the number of elements
involved (application processes and channels and archi-
tecture resources) and feasibility (e.g., allele sets). For
example, in a different study, we have also experimented
with larger application models, consisting of up to 26
processes and 75 channels, which required a search time
of about 25 seconds on the same Pentium-4 machine.

We have selected two nondominated solutions for further
investigation by means of simulation. These solutions and
their objective function values are given in Table 3. The sol 1
solution is a faster implementation which uses three
processor cores (PE-1, PE-2, and PE-3), while sol 2 is a cheaper
implementation using only two processing cores (PE-0 and
PE-1). In both platform instances, the processors are con-
nected to a single common bus and communicate via shared
memory (RAM-6). We modeled these platform instances with
our system-level simulation environment, initially using
nonrefined architecture model components, i.e., the simu-
lated architecture events are identical to the generated
application events. In the architecture models, the processing
cores such as PE-0 and PE-1 are modeled by (the performance

behavior of) representative types of architecture components
like microprocessors, DSPs, or ASICs.

The estimated cycle counts for the two platform
instances, as derived from system-level simulation, are
shown in Table 4. For these experiments, we simulated the
encoding of 11 frames with a resolution of 352� 288 pixels.
The simulations predict that the first target architecture
(sol 1) will be faster than the second architecture (sol 2),
which corresponds to the results from the analytical model
in Table 3. Besides the cycle count, the simulation produces
a multitude of other statistics on, for example, component
utilization (see Fig. 12), intercomponent communication,
and critical path analysis, of which the latter two are not
shown here due to space limitations. Table 4 also shows the
wall-clock time for the simulations on a 2.8MHz Pentium-4
machine, which is approximately 64 seconds for both
simulations. We further note that, although the absolute
cycle counts are not highly relevant in this illustrative case
study, we performed several validation experiments in
different studies of which the results demonstrate that our
high-level models can yield good accuracy [5], [51]. In these
experiments, we mapped various application models,

108 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 2, FEBRUARY 2006

Fig. 9. (Meta)platform architecture model.

TABLE 1
Processor and Memory Characteristics - I

Fig. 10. Nondominated front obtained by SPEA2.

TABLE 2
Processor Characteristics - II

TABLE 3
Two Solutions Chosen for Simulation

TABLE 4
Simulation of the Two Selected Platform Architectures

including M-JPEG, onto models of existing architecture
implementations and compared our performance estimates
with the timings of the actual implementations. For these
experiments, the errors of our estimations remained below
the five percent.

In our subsequent exploration, we mainly focus on the
DCT task in the M-JPEG application. This DCT application
task operates on half (2:1:1) macroblocks consisting of two
luminance (Y) blocks and two chrominance (U and V)
blocks. Regarding this DCT, we would like to model more
implementation details at the architectural level. To this
end, we first refine the PE onto which the DCT task is
mapped to reflect the fact that the luminance blocks need to
be preshifted before a DCT is performed. This requires a

refinement of the PE’s architecture-level events, which now
must include a preshift event. Since the application DCT task
will still generate course-grained DCT events, we need to
refine the application event trace in the mapping layer. This
is done with the IDF graph shown in the top half of Fig. 11.
The IDF scheduler activates this dataflow graph when the
incoming application event trace indicates the processing of
a half macroblock, i.e., the scheduler has encountered four
R! E!W event sequences that each refer to the proces-
sing of a single block inside a 2:1:1 half macroblock.
Subsequently, the IDF graph will generate preshift and
2D-DCT architecture-level events for the first two lumi-
nance blocks and only 2D-DCT events for the two following
chrominance blocks. The gray actors in Fig. 11 indicate that
they perform a token exchange with the architecture model,
thereby modeling the latency of their action.

The IDF graph also makes synchronization explicit using
transformations (1) and (2) from Section 6. Fig. 11 shows the
refinement graph for a PE without local memory. This is
modeled by checking for room early, as was shown in the
trace transformation equation (3). Modeling a PE with local
memory is done by simply reordering the synchronization
actors such that the check-room (cr) occurs just before the
store (st).

Table 5 gives the performance estimation for both target
architectures, with and without local memory for the
refined PE. The results in Table 5 show that performance
is increased when the PE has local memory to perform its

PIMENTEL ET AL.: A SYSTEMATIC APPROACH TO EXPLORING EMBEDDED SYSTEM ARCHITECTURES AT MULTIPLE ABSTRACTION... 109

Fig. 11. IDF graph refining the DCT task mapped on a processor without

local memory.

TABLE 5
Architecture Refinement Results - I

Fig. 12. Simulation results showing the utilization of architecture

components.

TABLE 6
Architecture Refinement Results - II

computations. The statistics in Fig. 12 indicate that mapping
the application tasks QC and DCT onto separate fast PEs
—as is done in solution 1—produces a balanced system.
Solution 2 maps the computation intensive DCT task onto
less powerful PE-0. This results in a cheaper system, but
performance is limited by PE-0. As a result, the memory
used for communication is underutilized. This also explains
why applying a local memory for PE-0 only marginally
improves the performance, as shown in Table 5.

These statistics point to exploring the possibilities of
solution 2 with a faster application-specific processing
element. The PE we target has two pixel pipelines which
allow it to perform a preshift and a 2D-DCT in parallel. The
pipelined PE is modeled in two different ways. In the first
model, indicated by implementation 5 in Table 6, we
reduced the execution latencies (to model a hardware
implementation) associated with the preshift and 2D-DCT
architecture-level events. These event latencies now ap-
proximate the time it takes the pipelines to process a single
pixel block. This is a quick way to model the effect a
pipelined PE has on the system.

Implementation 6 refines the preshift and 2D-DCT
operations at the architecture level as it models their
pipelines explicitly. However, it does so in an abstract
manner. The top right box in Fig. 11 shows a conceptual
view3 of the dataflow graph refining the 2D-DCT actor to
model an abstract pipeline. It models the latency and
throughput of the pipeline at pixel level without actually
modeling every single stage of the pipeline itself. The
architecture-level events from the abstract pipeline model
are mapped onto a refined architecture component that
allows parallel execution of preshift and 2D-DCT execute
events. Table 6 shows that performance estimations of both
models are very close, which is not surprising since the
abstract pipeline does not model pipeline stalls. Both
models indicate a significant performance increase over
solution 2 with the original PE. We note that, as a next step,
we could model the pipeline in more detail, accurately
accounting for pipeline stalls, by explicitly modeling all of
the pipeline stages as was done in [47].

Regarding the wall-clock times of the refined simulations
from Table 5 and Table 6, the simulation of models imp-1 up
to imp-5 all take approximately 65 seconds. Only the
simulation of implementation 6 takes 120 seconds because
this model simulates the DCT operation at the pixel level.

Finally, we would like to mention that the model for
implementation 6 yields a mixed-level simulation. This is
because PE-0 is refined such that it models (abstract)
pipelines at the pixel level while the other model
components still account for latencies at the level of
processing entire pixel blocks (in accordance to the
granularity of the application events). Moreover, during
all these experiments, the application model has been
reused without any alteration.

8 CONCLUSIONS

In this paper, we presented an overview of the Sesame
framework which provides high-level modeling and simu-
lation methods and tools for system-level performance
evaluation and exploration of heterogeneous SoC-based

embedded media systems. We described Sesame’s model-
ing methodology and trajectory in which a designer first
selects candidate architectures using analytical modeling
and multiobjective optimization. Subsequently, these can-
didate architectures can be simulated using Sesame’s
system-level simulation environment. This simulation en-
vironment allows for architectural exploration at different
levels of abstraction while maintaining high-level and
architecture-independent application specifications. This is
accomplished by the fact that Sesame bridges the abstrac-
tion gap between application and architecture models by
applying dataflow graphs in its intermediate mapping
layer. These dataflow graphs take care of the runtime
transformation of coarse-grained application-level events
into finer grained architecture-level events that drive the
architecture model components. We have illustrated all
these aspects using a case study in which we traverse
Sesame’s exploration trajectory for a Motion-JPEG encoder
application.

ACKNOWLEDGMENTS

This research is supported by PROGRESS, the embedded
systems research program of the Dutch organization for
Scientific Research NWO, the Dutch Ministry of Economic
Affairs, and the Technology Foundation STW. The authors
would like to thank all Sesame and Artemis group members
for their contributions to this work. Special credits go to Paul
Lieverse, Bart Kienhuis, Todor Stefanov, Ed Deprettere, Kees
Vissers, Pieter van der Wolf, and Vladimir �ZZivkovi�cc for
their ground-laying work with respect to the modeling
methodology applied in Sesame.

REFERENCES

[1] F. Vahid and T. Givargis, “Platform Tuning for Embedded
Systems Design,” Computer, vol. 34, no. 3, pp. 112-114, Mar. 2001.

[2] A. Sangiovanni-Vincentelli and G. Martin, “Platform-Based De-
sign and Software Design Methodology for Embedded Systems,”
IEEE Design and Test of Computers, vol. 18, no. 6, pp. 23-33, 2001.

[3] K. Keutzer, S. Malik, A. Newton, J. Rabaey, and A. Sangiovanni-
Vincentelli, “System Level Design: Orthogonalization of Concerns
and Platform-Based Design,” IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems, vol. 19, no. 12, pp. 1523-1543, Dec.
2000.

[4] A.D. Pimentel, P. Lieverse, P. van der Wolf, L.O. Hertzberger, and
E.F. Deprettere, “Exploring Embedded-Systems Architectures
with Artemis,” Computer, vol. 34, no. 11, pp. 57-63, Nov. 2001.

[5] A.D. Pimentel, “The Artemis Workbench for System-Level
Performance Evaluation of Embedded Systems,” Int’l J. Embedded
Systems, vol. 1, no. 7, 2005.

[6] F. Balarin, E. Sentovich, M. Chiodo, P. Giusto, H. Hsieh, B.
Tabbara, A. Jurecska, L. Lavagno, C. Passerone, K. Suzuki, and A.
Sangiovanni-Vincentelli, Hardware-Software Co-Design of Embedded
Systems—The POLIS Approach. Kluwer Academic, 1997.

[7] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and
A. Sangiovanni-Vincentelli, “Metropolis: An Integrated Electronic
System Design Environment,” Computer, vol. 36, no. 4, pp. 45-52,
Apr. 2003.

[8] A. Mihal, C. Kulkarni, C. Sauer, K. Vissers, M. Moskewicz, M.
Tsai, N. Shah, S. Weber, Y. Jin, K. Keutzer, and S. Malik,
“Developing Architectural Platforms: A Disciplined Approach,”
IEEE Design and Test of Computers, vol. 19, no. 6, pp. 6-16, Nov./
Dec. 2002.

[9] A. Cassidy, J. Paul, and D. Thomas, “Layered, Multi-Threaded,
High-Level Performance Design,” Proc. Int’l Conf. Design, Auto-
mation and Test in Europe (DATE), Mar. 2003.

[10] S. Mohanty and V.K. Prasanna, “Rapid System-Level Performance
Evaluation and Optimization for Application Mapping onto SoC
Architectures,” Proc. IEEE Int’l ASIC/SOC Conf., 2002.

110 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 2, FEBRUARY 2006

3. Some details have been omitted, like the translation of blocks into
pixels. The interested reader is referred to [5] for more details.

[11] T. Kogel, A. Wieferink, R. Leupers, G. Ascheid, H. Meyr, D.
Bussaglia, and M. Ariyamparambath, “Virtual Architecture
Mapping: A SystemC Based Methodology for Architectural
Exploration of System-on-Chip Designs,” Proc. Int’l Workshop
Systems, Architectures, Modeling, and Simulation (SAMOS), pp. 138-
148, 2003.

[12] M. Gries, “Methods for Evaluating and Covering the Design Space
during Early Design Development,” Integration, the VLSI J., vol. 38,
no. 2, pp. 131-183, 2004.

[13] K. Lahiri, A. Raghunathan, and S. Dey, “System-Level Perfor-
mance Analysis for Designing On-Chip Communication Archi-
tectures,” IEEE Trans. Computer-Aided Design of Integrated Circuits
and Systems, vol. 20, no. 6, pp. 768-783, June 2001.

[14] V. �ZZivkovi�cc, E.F. Deprettere, P. van der Wolf, and E. de Kock,
“Fast and Accurate Multiprocessor Architecture Exploration with
Symbolic Programs,” Proc. Int’l Conf. Design, Automation and Test
in Europe (DATE), Mar. 2003.

[15] P. Lieverse, P. van der Wolf, E.F. Deprettere, and K.A. Vissers, “A
Methodology for Architecture Exploration of Heterogeneous
Signal Processing Systems,” J. VLSI Signal Processing for Signal,
Image, and Video Technology, vol. 29, no. 3, pp. 197-207, Nov. 2001.

[16] J.T. Buck, S. Ha, E.A. Lee, and D.G. Messerschmitt, “Ptolemy: A
Framework for Simulating and Prototyping Heterogeneous
Systems,” Int’l J. Computer Simulation, vol. 4, pp. 155-182, Apr.
1994.

[17] C.A.R. Hoare, “Communicating Sequential Processes,” Comm.
ACM, vol. 21, no. 8, Aug. 1978.

[18] E.A. Lee and T.M. Parks, “Dataflow Process Networks,” Proc.
IEEE, vol. 83, no. 5, pp. 773-801, May 1995.

[19] G. Kahn, “The Semantics of a Simple Language for Parallel
Programming,” Proc. IFIP Congress 74, 1974.

[20] L. Thiele, S. Chakraborty, M. Gries, and S. Künzli, “A Framework
for Evaluating Design Tradeoffs in Packet Processing Architec-
tures,” Proc. Design Automation Conf. (DAC), June 2002.

[21] R.P. Dick and N.K. Jha, “MOGAC: A Multiobjective Genetic
Algorithm for Hardware-Software Co-Synthesis of Distributed
Embedded Systems,” IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems, Oct. 1998.

[22] T. Blickle, J. Teich, and L. Thiele, “System-Level Synthesis Using
Evolutionary Algorithms,” Design Automation for Embedded Sys-
tems, vol. 3, no. 1, pp. 23-58, 1998.

[23] G. Ascia, V. Catania, and M. Palesi, “A GA-Based Design Space
Exploration Framework for Parameterized System-on-a-Chip
Platforms,” IEEE Trans. Evolutionary Computation, vol. 8, no. 4,
pp. 329-346, 2004.

[24] T. Givargis and F. Vahid, “Platune: A Tuning Framework for
System-on-a-Chip Platforms,” IEEE Trans. Computer-Aided Design
of Integrated Circuits and Systems, vol. 21, no. 11, pp. 1317-1327,
2002.

[25] T. Givargis, F. Vahid, and J. Henkel, “System-Level Exploration
for Pareto-Optimal Configurations in Parameterized System-on-a-
Chip,” IEEE Trans. Very Large Scale Integration Systems, vol. 10,
no. 4, pp. 416-422, 2002.

[26] J. Peng, S. Abdi, and D. Gajski, “Automatic Model Refinement for
Fast Architecture Exploration,” Proc. Int’l Conf. VLSI Design,
pp. 332-337, Jan. 2002.

[27] S. Abdi, D. Shin, and D. Gajski, “Automatic Communication
Refinement for System Level Design,” Proc. Design Automation
Conf. (DAC), pp. 300-305, June 2003.

[28] P. Lieverse, P. van der Wolf, and E.F. Deprettere, “A Trace
Transformation Technique for Communication Refinement,” Proc.
Int’l Symp. Hardware/Software Codesign (CODES), pp. 134-139, Apr.
2001.

[29] G. Nicolescu, S. Yoo, and A.A. Jerraya, “Mixed-Level Cosimula-
tion for Fine Gradual Refinement of Communication in SoC
Design,” Proc. Int’l Conf. Design, Automation and Test in Europe
(DATE), Mar. 2001.

[30] J.Y. Brunel, E.A. de Kock, W. Kruijtzer, H. Kenter, and W. Smits,
“Communication Refinement in Video Systems on Chip,” Proc.
Int’l Workshop Hardware/Software Codesign (CODES), pp. 142-146,
May 1999.

[31] J. Rowson and A. Sangiovanni-Vincentelli, “Interface-Based De-
sign,” Proc. Design Automation Conf. (DAC), June 1997.

[32] B. Kienhuis, E.F. Deprettere, K.A. Vissers, and P. van der Wolf,
“An Approach for Quantitative Analysis of Application-Specific
Dataflow Architectures,” Proc. Int’l Conf. Application-Specific
Systems, Architectures, and Processors (ASAP), July 1997.

[33] B. Kienhuis, E.F. Deprettere, P. van der Wolf, and K.A. Vissers, “A
Methodology to Design Programmable Embedded Systems: The
Y-Chart Approach,” Embedded Processor Design Challenges, pp. 18-
37, Springer, 2002.

[34] C. Erbas, S.C. Erbas, and A.D. Pimentel, “A Multiobjective
Optimization Model for Exploring Multiprocessor Mappings of
Process Networks,” Proc. Int’l Conf. HW/SW Codesign and System
Synthesis (CODES-ISSS), pp. 182-187, Oct. 2003.

[35] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the
Strength Pareto Evolutionary Algorithm for Multiobjective Opti-
mization,” Evolutionary Methods for Design, Optimisation, and
Control, pp. 95-100, Barcelona: CIMNE, 2002.

[36] A.D. Pimentel, S. Polstra, F. Terpstra, A.W. van Halderen, J.E.
Coffland, and L.O. Hertzberger, “Towards Efficient Design Space
Exploration of Heterogeneous Embedded Media Systems,”
Embedded Processor Design Challenges, pp. 57-73, Springer, 2002.

[37] J.E. Coffland and A.D. Pimentel, “A Software Framework for
Efficient System-Level Performance Evaluation of Embedded
Systems,” Proc. ACM Symp. Applied Computing (SAC), pp. 666-
671, Mar. 2003, http://sesamesim.sourceforge.net/.

[38] A. Turjan, B. Kienhuis, and E.F. Deprettere, “Translating Affine
Nested Loop Programs to Process Networks,” Proc. Int’l Conf.
Compilers, Architectures, and Synthesis for Embedded Systems
(CASES), Sept. 2004.

[39] T. Stefanov and E.F. Deprettere, “Deriving Process Networks from
Weakly Dynamic Applications in System-Level Design,” Proc. Int’l
Conf. HW/SW Codesign and System Synthesis (CODES-ISSS), Oct.
2003.

[40] E.A. Lee and S. Neuendorffer, “MoML—a Modeling Markup
Language in XML, version 0.4,” Technical Report UCB/ERL
M00/8, Electronics Research Lab, Univ. of California, Berkeley,
Mar. 2000.

[41] L. Cai and D. Gajski, “Transaction Level Modeling: An Over-
view,” Proc. Int’l Conf. HW/SW Codesign and System Synthesis
(CODES-ISSS), pp. 19-24, Oct. 2003.

[42] T. Grötker, S. Liao, G. Martin, and S. Swan, System Design with
SystemC. Kluwer Academic, 2002.

[43] H.L. Muller, “Simulating Computer Architectures,” PhD thesis,
Dept. of Computer Science, Univ. of Amsterdam, Feb. 1993.

[44] M. Thompson and A.D. Pimentel, “A High-Level Programming
Paradigm for SystemC,” Proc. Int’l Workshop Systems, Architectures,
MOdeling, and Simulation (SAMOS), pp. 530-539, July 2004.

[45] A.D. Pimentel and C. Erbas, “An IDF-Based Trace Transformation
Method for Communication Refinement,” Proc. Design Automation
Conf. (DAC), pp. 402-407, June 2003.

[46] C. Erbas and A.D. Pimentel, “Utilizing Synthesis Methods in
Accurate System-Level Exploration of Heterogeneous Embedded
Systems,” Proc. IEEE Workshop Signal Processing Systems (SiPS),
pp. 310-315, Aug. 2003.

[47] C. Erbas, S. Polstra, and A.D. Pimentel, “IDF Models for Trace
Transformations: A Case Study in Computational Refinement,”
Proc. Int’l Workshop Systems, Architectures, MOdeling, and Simula-
tion (SAMOS), pp. 178-187, July 2003.

[48] E.A. Lee and D.G. Messerschmitt, “Synchronous Data Flow,” Proc.
IEEE, vol. 75, no. 9, pp. 1235-1245, Sept. 1987.

[49] J.T. Buck, “Static Scheduling and Code Generation from Dynamic
Dataflow Graphs with Integer Valued Control Streams,” Proc.
Asilomar Conf. Signals, Systems, and Computers, Oct. 1994.

[50] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler, “PISA—A
Platform and Programming Language Independent Interface for
Search Algorithms,” Proc. Evolutionary Multi-Criterion Optimization
(EMO 2003), pp. 494-508, 2003.

[51] A.D. Pimentel, F.P. Terpstra, S. Polstra, and J.E. Coffland, “On the
Modeling of Intra-Task Parallelism in Task-Level Parallel Em-
bedded Systems,” Domain-Specific Processors, pp. 85-105, Marcel
Dekker, 2003.

PIMENTEL ET AL.: A SYSTEMATIC APPROACH TO EXPLORING EMBEDDED SYSTEM ARCHITECTURES AT MULTIPLE ABSTRACTION... 111

Andy D. Pimentel received the MSc and PhD
degrees in computer science from the University
of Amsterdam, where he is currently an assis-
tant professor in the Informatics Institute. He is
member of the European Network of Excellence
on High-Performance Embedded Architecture
and Compilation (HiPEAC). His research inter-
ests include computer architecture, computer
architecture modeling and simulation, system-
level design, design space exploration, perfor-

mance analysis, embedded systems, and parallel computing. He is a
member of the IEEE Computer Society.

Cagkan Erbas received the BSc degree in
electrical engineering from Middle East Techni-
cal University, Ankara, and the MSc degree in
computer engineering from Ege University,
Izmir. He is currently a PhD student in computer
science at the University of Amsterdam. His
research interests include embedded systems,
hardware/software codesign, multiobjective
search algorithms, and metaheuristics. He is a
student member of the IEEE.

Simon Polstra received the MSc degree in
computer science from the University of Am-
sterdam. Currently, he is a member of the
Computer Systems Architecture Group at the
University of Amsterdam. He has previously
been active as an engineer at the National
Aerospace Lab in The Netherlands. His re-
search interests include computer architecture
and abstract system modeling.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

112 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 2, FEBRUARY 2006

